期刊文献+
共找到53,377篇文章
< 1 2 250 >
每页显示 20 50 100
Disorder effects in NbTiN superconducting resonators
1
作者 吕伟涛 支强 +2 位作者 胡洁 李婧 史生才 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期482-486,共5页
Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical... Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials. 展开更多
关键词 effects of disorder NbTiN superconducting film Usadel equation complex conductivity superconducting resonator
原文传递
Evolution of Superconducting-Transition Temperature with Superfluid Density and Conductivity in Pressurized Cuprate Superconductors
2
作者 赵金瑜 蔡树 +15 位作者 陈逸雯 顾根大 闫宏涛 郭静 韩金宇 王鹏玉 周亚洲 李延春 李晓东 任治安 吴奇 周兴江 丁阳 向涛 毛河光 孙力玲 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期110-117,共8页
What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law kn... What factors fundamentally determine the value of superconducting transition temperature Tc in high temperature superconductors has been the subject of intense debate.Following the establishment of an empirical law known as Homes'law,there is a growing consensus in the community that the Tc value of the cuprate superconductors is closely linked to the superfluid density(ρ_(s))of its ground state and the conductivity(σ)of its normal state.However,all the data supporting this empirical law(ρ_(s)=AσT_(c))have been obtained from the ambientpressure superconductors.In this study,we present the first high-pressure results about the connection of the quantities of ρ_(s) and σ with T_(c),through the studies on the Bi_(1.74)Pb_(0.38)Sr_(1.88)CuO_(6+δ)and Bi_(2)Sr_(2)CaCu_(2)O_(8+δ),in which the value of their high-pressure resistivity(ρ=1/σ)is achieved by adopting our newly established method,while the quantity ofρs is extracted using Homes'law.We highlight that the Tc values are strongly linked to the joint response factors of magnetic field and electric field,i.e.,ρ_(s) and σ,respectively,implying that the physics determining T_(c) is governed by the intrinsic electromagnetic fields of the system. 展开更多
关键词 SUPERconductORS TRANSITION conductIVITY
原文传递
A Modification of LiMn2O4 by Ionic Conductive Agent and Electronic Conductive Agent Coating
3
作者 Xiaohui Sun Meng Wang +1 位作者 Tianming Yuan Jingkang Li 《Natural Science》 2024年第1期1-6,共6页
Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evalu... Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evaluated their effect by using spherical spinel LiMn<sub>2</sub>O<sub>4</sub> which prepared ourselves as cathode material. Then Li<sub>2</sub>SiO<sub><sub></sub>3</sub>/carbon surface coating on LiMn<sub><sub></sub>2</sub>O<sub>4</sub> (LMO/C/LSO) which Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> inside and carbon/Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> coated LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> (LMO/LSO/C) were prepared, All of materials were characterized by X-ray diffraction (XRD) and electrochemical test;spherical LiMn<sub></sub>2O<sub></sub>4 was characterized by scanning electron microscopy (SEM);and coated materials were characterized by transmission electron microscopy (TEM). While uncoated spinel LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> maintained 72% of capacity in 60 cycles by the rate of 0.2C, and LMO/LSO/C showed the best electrochemical performance, 89% of the initial capacity remained after 75 cycles at 0.2C. Furthermore, the rate performance of LMO/LSO/C also improved obviously, about 30 mAh·g<sup>-1</sup> of capacity attained at the rate of 5C, higher than LMO/C/LSO and bare LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub>. 展开更多
关键词 Electronic conduction Ionic conduction LMO/LSO/C
下载PDF
Variational Approach to 2D and 3D Heat Conduction Modeling
4
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第4期1383-1400,共18页
The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximat... The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximate solution of the generalized (hyperbolic) 2D and 3D equation for the considered plate and cube is also proposed. Approximate solutions were obtained by applying calculus of variations and Euler-Lagrange equations. In order to verify the correctness of the proposed approximate solutions, they were compared with the exact solutions of parabolic and hyperbolic equations. The paper also presents the research on the influence of time parameters τ as well as the relaxation times τ ∗ to the variation of the profile of the temperature field for the considered aluminum plate and cube. 展开更多
关键词 Classical Equation of Heat conduction Generalized Equation of Heat conduction Calculus of Variations Approximate Solution
下载PDF
Enhanced conductivity and weakened magnetism in Pb-doped Sr_(2)IrO_(4)
5
作者 岳智来 甄伟立 +4 位作者 牛瑞 焦珂珂 朱文卡 皮雳 张昌锦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期680-685,共6页
Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr_(2)IrO_(4). It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.... Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr_(2)IrO_(4). It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.3 in Sr_(2-x)Pb_(x)IrO_(4). The mapping data obtained from energy-dispersive x-ray spectroscopy analyses give solid evidence that the Pb ions are uniformly distributed in the Sr_(2)IrO_(4) matrix. The incorporation of Pb leads to a moderate depression of the canted antiferromagnetic ordering state. The electrical conductivity could be greatly enhanced when the Pb doping content is higher than x=0.2.The present results give a fresh material base to explore new physics in doped Sr_(2)IrO_(4) systems. 展开更多
关键词 iridates DOPING conductIVITY MAGNETISM
原文传递
Highly Thermoconductive,Strong Graphene‑Based Composite Films by Eliminating Nanosheets Wrinkles
6
作者 Guang Xiao Hao Li +2 位作者 Zhizhou Yu Haoting Niu Yagang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期328-340,共13页
Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros... Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices. 展开更多
关键词 GRAPHENE Aramid nanofiber Wrinkles elimination In-plane stretching Thermal conductivity
下载PDF
Spatiotemporal variations of sand hydraulic conductivity by microbial application methods
7
作者 Viroon Kamchoom Thiti Khattiwong +2 位作者 Treesukon Treebupachatsakul Suraparb Keawsawasvong Anthony Kwan Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期268-278,共11页
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prep... The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent. 展开更多
关键词 Bio-mediated soil DEXTRAN Hydraulic conductivity Leuconostoc mesenteroides Microbial application MICROSTRUCTURE
下载PDF
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
8
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
原文传递
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
9
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
10
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity Two-phase flow Pressure transient analysis
下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy
11
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network Geological entropy Directional entropic scale ANISOTROPY Hydraulic conductivity
下载PDF
Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method
12
作者 Hongxia Li Wenjun Xu +5 位作者 Yufei Zhang Shenglan Yang Lijun Zhang Bin Liu Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期129-137,共9页
Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high ther... Mg-Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition.The accurate prediction of thermal conductivity is a prerequisite for designing Mg-Al alloys with high thermal conductivity.Thus,databases for predicting temperature-and composition-dependent thermal conductivities must be established.In this study,Mg-Al-La alloys with different contents of Al2La,Al3La,and Al11La3phases and solid solubility of Al in the α-Mg phase were designed.The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated.Experimental results revealed a second phase transformation from Al_(2)La to Al_(3)La and further to Al_(11)La_(3)with the increasing Al content at a constant La amount.The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La>Al3La>Al_(11)La_(3).Compared with the second phase,an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity.On the basis of the experimental data,a database of the reciprocal thermal diffusivity of the Mg-Al-La system was established by calculation of the phase diagram (CALPHAD)method.With a standard error of±1.2 W/(m·K),the predicted results were in good agreement with the experimental data.The established database can be used to design Mg-Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects. 展开更多
关键词 magnesium alloy thermal conductivity thermodynamic calculations materials computation
下载PDF
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries
13
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
14
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy INSULATION thermal conductivity
原文传递
Flexible, Transparent and Conductive Metal Mesh Films with Ultra‑High FoM for Stretchable Heating and Electromagnetic Interference Shielding
15
作者 Zibo Chen Shaodian Yang +9 位作者 Junhua Huang Yifan Gu Weibo Huang Shaoyong Liu Zhiqiang Lin Zhiping Zeng Yougen Hu Zimin Chen Boru Yang Xuchun Gui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期201-213,共13页
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan... Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications. 展开更多
关键词 Metal mesh Transparent conductive film Stretchable heater Electromagnetic interference shielding
下载PDF
Thermal conductivity of GeTe crystals based on machine learning potentials
16
作者 张健 张昊春 +1 位作者 李伟峰 张刚 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期104-107,共4页
GeTe has attracted extensive research interest for thermoelectric applications.In this paper,we first train a neuroevolution potential(NEP)based on a dataset constructed by ab initio molecular dynamics,with the Gaussi... GeTe has attracted extensive research interest for thermoelectric applications.In this paper,we first train a neuroevolution potential(NEP)based on a dataset constructed by ab initio molecular dynamics,with the Gaussian approximation potential(GAP)as a reference.The phonon density of states is then calculated by two machine learning potentials and compared with density functional theory results,with the GAP potential having higher accuracy.Next,the thermal conductivity of a GeTe crystal at 300 K is calculated by the equilibrium molecular dynamics method using both machine learning potentials,and both of them are in good agreement with the experimental results;however,the calculation speed when using the NEP potential is about 500 times faster than when using the GAP potential.Finally,the lattice thermal conductivity in the range of 300 K-600 K is calculated using the NEP potential.The lattice thermal conductivity decreases as the temperature increases due to the phonon anharmonic effect.This study provides a theoretical tool for the study of the thermal conductivity of GeTe. 展开更多
关键词 machine learning potentials thermal conductivity molecular dynamics
原文传递
Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
17
作者 孙宗利 康艳霜 康艳梅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期594-603,共10页
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean... Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions. 展开更多
关键词 thermal conductivity nano-fluidic films density functional theory
原文传递
Saturation Estimation with Complex Electrical Conductivity for Hydrate-Bearing Clayey Sediments:An Experimental Study
18
作者 XING Lanchang ZHANG Shuli +8 位作者 ZHANG Huanhuan WU Chenyutong WANG Bin LAO Liyun WEI Wei HAN Weifeng WEI Zhoutuo GE Xinmin DENG Shaogui 《Journal of Ocean University of China》 CAS CSCD 2024年第1期173-189,共17页
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S... Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively. 展开更多
关键词 gas hydrate complex electrical conductivity hydrate-bearing clayey sediment hydrate saturation Simandoux equation frequency dispersion Cole-Cole formula
下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
19
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
20
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部