WHEN scanning electrochemical microscopy (SECM) with feedback mode is used to etchcertain surface, the etchant molecules generated at a microelectrode diffuse to the surface andreact therein with the surface species, ...WHEN scanning electrochemical microscopy (SECM) with feedback mode is used to etchcertain surface, the etchant molecules generated at a microelectrode diffuse to the surface andreact therein with the surface species, resulting in local etching pattern. It is noted that theetching resolution of SECM is dominantly determined by the size of the microelectrode.However, many experimental results have shown the significant influence of the lateral diffu-sion of etchant on the etching resolution. Therefore, a thin diffusion layer of the展开更多
By introducing the mechanical motion into the confined etchant layer technique(CELT), we have developed a promising ultraprecision machining method, termed as electrochemical mechanical micromachining(ECMM), for produ...By introducing the mechanical motion into the confined etchant layer technique(CELT), we have developed a promising ultraprecision machining method, termed as electrochemical mechanical micromachining(ECMM), for producing both regular and irregular three dimensional(3 D) microstructures. It was found that there was a dramatic coupling effect between the confined etching process and the slow-rate mechanical motion because of the concentration distribution of electrogenerated etchant caused by the latter. In this article, the coupling effect was investigated systemically by comparing the etchant diffusion, etching depths and profiles in the non-confined and confined machining modes. A two-dimensional(2 D) numerical simulation model was proposed to analyze the diffusion variations during the ECMM process, which is well verified by the machining experiments. The results showed that, in the confined machining mode, both the machining resolution and the perpendicularity tolerance of side faces were improved effectively. Furthermore, the theoretical modeling and numerical simulations were proved valuable to optimize the technical parameters of the ECMM process.展开更多
文摘WHEN scanning electrochemical microscopy (SECM) with feedback mode is used to etchcertain surface, the etchant molecules generated at a microelectrode diffuse to the surface andreact therein with the surface species, resulting in local etching pattern. It is noted that theetching resolution of SECM is dominantly determined by the size of the microelectrode.However, many experimental results have shown the significant influence of the lateral diffu-sion of etchant on the etching resolution. Therefore, a thin diffusion layer of the
基金supported by the National Natural Science Foundation of China (21573054, 21327002, 91323303, 21621091)the Joint Funds Key Project of the National Natural Science Foundation of China (U1537214)+2 种基金the State Key Program of National Natural Science of China (51535003)Self-Planned Task (SKLRS201606B) of State Key Laboratory of Robotics and System (HIT)the Open Project of the State Key Laboratory for Manufacturing Systems Engineering (Xi'an Jiaotong University)
文摘By introducing the mechanical motion into the confined etchant layer technique(CELT), we have developed a promising ultraprecision machining method, termed as electrochemical mechanical micromachining(ECMM), for producing both regular and irregular three dimensional(3 D) microstructures. It was found that there was a dramatic coupling effect between the confined etching process and the slow-rate mechanical motion because of the concentration distribution of electrogenerated etchant caused by the latter. In this article, the coupling effect was investigated systemically by comparing the etchant diffusion, etching depths and profiles in the non-confined and confined machining modes. A two-dimensional(2 D) numerical simulation model was proposed to analyze the diffusion variations during the ECMM process, which is well verified by the machining experiments. The results showed that, in the confined machining mode, both the machining resolution and the perpendicularity tolerance of side faces were improved effectively. Furthermore, the theoretical modeling and numerical simulations were proved valuable to optimize the technical parameters of the ECMM process.