期刊文献+
共找到1,744篇文章
< 1 2 88 >
每页显示 20 50 100
Fuel combustion test in constant volume combustion chamber with built-in adaptor 被引量:2
1
作者 JEONG DongSoo CHO GyuBack +1 位作者 CHOI SuJin LEE JinSoo 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第4期1000-1007,共8页
Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperatur... Combustion tests of pre-mixture of methane and air in constant volume combustion chamber(CVCC) have been carried out by means of flame propagation photo and gas pressure measurement,the effects of CVCC body temperature,intake pressure of pre-mixture of methane and air,equivalence ratio and location of the built-in adaptor have been investigated.The whole combustion chamber can be divided into two parts,i.e.the upper combustion chamber and the lower combustion chamber,by the built-in adaptor with through hole.Owing to the built-in adaptor with through hole,jet ignition or compression ignition(auto-ignition) phenomena may occur in the lower combustion chamber,which is helpful to getting higher flame propagation velocity,higher combustion peak pressure,low cycle-to-cycle variation and more stable combustion process. 展开更多
关键词 constant volume combustion chamber(CVCC) BUILT-IN ADAPTOR gas pressure measurement FLAME propagation photo METHANE
原文传递
Development of a fan-stirred constant volume combustion chamber and turbulence measurement with PIV
2
作者 Haoran ZHAO Jinhua WANG +3 位作者 Xiao CAI Zhijian BIAN Hongchao DAI Zuohua HUANG 《Frontiers in Energy》 SCIE CSCD 2022年第6期973-987,共15页
A fan-stirred combustion chamber is developed for spherically expanding flames,with P and T up to 10 bar and 473 K,respectively.Turbulence characteristics are estimated using particle image velocimetry(PIV)at differen... A fan-stirred combustion chamber is developed for spherically expanding flames,with P and T up to 10 bar and 473 K,respectively.Turbulence characteristics are estimated using particle image velocimetry(PIV)at different initial pressures(P=0.5-5 bar),fan frequencies(ω=0-2000 r/min),and impeller diameters(D=100 and 114 mm).The flame propagation of methanol/air is investigated at different turbulence intensities(u′=0-1.77 m/s)and equivalence ratios(f=0.7-1.5).The results show that u′is independent of P and proportional toω,which can be up to 3.5 m/s at 2000 r/min.L_(T)is independent of P and performs a power regression withωapproximately.The turbulent field is homogeneous and isotropic in the central region of the chamber while the inertial subrange of spatial energy spectrum is more collapsed to-5/3 law at a high Re_(T).Compared to laminar expanding flames,the morphology of turbulent expanding flames is wrinkled and the wrinkles will be finer with the growth of turbulence intensity,consistent with the decline of the Taylor scale and the Kolmogorov scale.The determined S_(L)in the present study is in good agreement with that of previous literature.The S_(L)and S_(T)of methanol/air have a non-monotonic trend with f while peak S_(T)is shifted to the richer side compared to S_(L).This indicates that the newly built turbulent combustion chamber is reliable for further experimental study. 展开更多
关键词 fan-stirred combustion chamber turbulence characteristics particle image velocimetry(PIV) methanol turbulent expanding flames
原文传递
Effects of Excess Air Coefficients on Combustion Characteristics of N-butanol by a Constant Volume Combustion Bomb
3
作者 赵玉垒 张纪鹏 张西强 《科技信息》 2011年第8期I0026-I0028,共3页
The effects of excess air coefficients on the combustion characteristics have been experimentally investigated by means of a constant volume combustion bomb.N-butanol was tested as the research fuel at different air-f... The effects of excess air coefficients on the combustion characteristics have been experimentally investigated by means of a constant volume combustion bomb.N-butanol was tested as the research fuel at different air-fuel equivalence ratios.Through the discussion of the combustion pressure,the combustion temperature,accumulated heat release,ignition delay and combustion duration,the effects of the excess air coefficient on combustion characteristics is clarified.Experimental results show that near the theoretical air-fuel ratio,the combustion rate is the fastest accompanying with shorter combustion duration while the combustion pressure and temperature reach the maximum.With increase or decrease of the excess air coefficient the combustion pressure,the temperature and the heat release reduce.Simultaneously,the combustion timing is deferred and the combustion duration becomes longer. 展开更多
关键词 过剩空气系数 燃料 温度 燃烧时间
下载PDF
Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber 被引量:3
4
作者 邓军 何立明 +1 位作者 刘兴建 陈一 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期75-85,共11页
A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure.Considering the physical and chemical p... A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure.Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference's results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied.Numerical simulations show that with an inlet airflow velocity of 10 m s^(-1), a CH_4-air mixtures' equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH_4 and H_2O increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms. 展开更多
关键词 空气混合物 燃烧模型 数字模拟 血浆 甲烷 房间 数学模型 火焰温度
下载PDF
Effect of Swirl Preset Vorticity on Combustion Performance of Lobe Nozzle Combustor Chamber
5
作者 WANG Lijun JIANG Jintao +2 位作者 YUAN Weiwei MEN Kuo XU Yijun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第5期828-837,共10页
To improve the combustor performance of multi-point injection combustion,lobe nozzle design was applied to the aero-engine model combustor,by presetting the swirl through a certain twisted angle of the edge of the lob... To improve the combustor performance of multi-point injection combustion,lobe nozzle design was applied to the aero-engine model combustor,by presetting the swirl through a certain twisted angle of the edge of the lobe outlet.Numerical simulation in combination with modelling test is used in this paper.The effects of swirl vorticity presetting onto the vortex structure,the characteristics of combustion temperature field,the combustor exit temperature field quality,the combustion efficiency,and the NOx emissions of multi-point injection combustion chamber are investigated.Compared with the conventional vortex flow at the lobe outlet edge,the results of numerical simulation and water modelling test of the swirl vorticity presetting show that the swirl presetting can efficiently enhance the range and intensity of the lobe-induced vorticities.Besides,it can improve the uniformity of the combustion temperature in the combustor chamber,together with the reduced emissions of the pollutant NOx.Moreover,compared with the conventional lobe nozzle chamber,the swirl vortex presetting can effectively improve its combustion performance.The flow simulation test results demonstrate the fluid vortex structure in the combustion chamber and validate the simulation results. 展开更多
关键词 LOBE NOZZLE vortex structure multi-point injection COMBUSTOR chamber combustion performance combustion characteristics
下载PDF
Application of Reaction-Bonded Silicon Carbide in Manufacturing of Spacecraft Combustion Chamber
6
作者 CHEN Ming-he, GAO Lin, ZHOU Jian-hua, WANG Min (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期2-,共1页
Silicon carbide (SiC) ceramics is a good structural ceramics material, which have a lot of excellent properties such as superior high-temperature strength up to a temperature of 1 350 ℃, chemical stability, good resi... Silicon carbide (SiC) ceramics is a good structural ceramics material, which have a lot of excellent properties such as superior high-temperature strength up to a temperature of 1 350 ℃, chemical stability, good resistance to thermal shock and high abrasion resistance. The silicon carbide ceramics material has so far been used widely for manufacturing various components such as heat exchangers, rolls, rockets combustion chamber. Sintering of ceramics structural parts have many technological method, the reaction-bonded is one of important sintering technology of ceramics structural parts. The preparation of reaction-bonded silicon carbide (RBSC) is based on a reaction sintering process, whereby a compacted body of α-SiC and carbon (graphite) powders is heated in contact with liquid silicon or gas silicon, which impregnates the body, converting the carbon (graphite) to β-SiC which bonds the original alpha grain. This process is characterized by low temperature and a short time sintering, and being appropriate to the preparation of large size and complex-shaped components, and so on. Besides, during compacting process of reaction sintering, it can maintain a stable dimension of ceramics parts. Therefore, the method of reaction-bonded silicon carbide ceramics has been identified as a technology suitable for producing complicated and highly exact dimensions’ ceramics parts. In this paper, the method of reaction-bonded silicon carbide was applied to the manufacturing of a complex-shaped spacecraft combustion chamber of SiC ceramics. SiC and carbon powder of 4~30 μm were chosen as the raw materials, green compacts containing appropriate wt.% carbon were formed using the mold press method, sintering was performed in a graphite electric furnace under an argon atmosphere. It was introduced in detail that the technological parameters and technological flow of reaction sintering silicon carbide ceramics. At the same time, physical and mechanical experiments such as bending strength, coefficient of thermal expansion, coefficient of thermal conductivity, gastight property, heat resisting property etc. have been carried out. The results demonstrated that spacecraft combustion chamber made from reaction sintering of silicon carbide ceramics is feasible and the results of experiment is satisfactory. The strength of high-temperature structural parts made by reaction sintered SiC varied with silicon content; Under the this article testing condition, the optimum silicon content is 10.5% for the part investigated. The method of reaction sintered SiC ceramics is suitable for manufacturing of complicated spacecraft parts with a working temperature of 1 500 ℃. 展开更多
关键词 silicon carbide ceramics SPACECRAFT combustion chamber reaction bonded
下载PDF
Fundamental Laws of Physics and Calculation of Heat Transfer in Combustion Chambers of Gas-Turbine Plants
7
作者 Anatoly Nikolaevich Makarov 《World Journal of Engineering and Technology》 2017年第3期358-375,共18页
The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students... The laws of heat radiation from black body, the laws of Stefan-Boltzmann, Planck, and Wien are fundamental laws of physics. All in all, a little more than 30 fundamental laws of physics, studied by pupils and students worldwide were disclosed. Scientific disclosure of fundamental laws influences mainly power technology, fuel and energy resources saving. In the late XIX century the laws of heat radiation from gas volumes and the laws of Makarov were disclosed. Since the radiation laws from blackbody are fundamental laws of physics, then the laws of heat radiation from gas volumes are fundamental laws of physics. Effect of using laws of heat radiation from gas volumes on fuel saving, reduction of development pressure on the environment in many countries of the world is shown. Calculation results from heat transfer in combustion chamber of gas-turbine plant are described. The torch in a combustion chamber is modeled by cylindrical gas volumes. Fluxes data from the torch and convective fluxes of cooling air are confirmed by measuring data from chamber-wall temperature. 展开更多
关键词 PHYSICS Scientific Discovery LAWS NOBEL PRIZE Heat Radiation Gas volumeS combustion chamber
下载PDF
Effect of Gasoline Property on Formation of Intake Valve and Combustion Chamber Deposits
8
作者 Xu Xiaohong Cai Jin +1 位作者 Liu Quanshan Xue Qunji 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2011年第3期27-32,共6页
The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the eng... The cleanliness of gasoline is related to its components and properties.All commercial gasoline builds up deposits on the engine's injector,intake valve and combustion chamber,which can significantly lower the engine performance and influence exhaust gas emissions.In this study,the intake valve deposits (IVD) and combustion chamber deposits (CCD) produced from combustion of fuel containing 21 v%—42 v% of aromatics and 8 v%—31 v% of olefins have been studied using Ford engine tests,and the characteristics of deposits were studied by IR spectroscopy,TGA and elemental analysis instrument.The test results have shown that deposit formation depends on the fuel composition,especially the aromatic content in the fuel.It is also observed that there are differences in the values of IVD and CCD measured by IR spectrometry and elemental analyses. 展开更多
关键词 汽油发动机 沉积物 燃烧室 进气阀 元素分析仪 物业 燃料燃烧 红外光谱
下载PDF
Full Cycle Cold Flow Analysis of the Effect of Twin Swirl Combustion Chamber Design in a Diesel Engine
9
作者 Doğan Güneş Mehmet Serkan Horasan 《World Journal of Mechanics》 2016年第4期109-117,共9页
New designs and adaptation methods are experimented to ensure compliance to ever increasing emissions and efficiency requirements of modern diesel engines. Piston head structure which influences the mixing rate and ti... New designs and adaptation methods are experimented to ensure compliance to ever increasing emissions and efficiency requirements of modern diesel engines. Piston head structure which influences the mixing rate and timing of the fuel within in the combustion chamber is known to enable increase in combustion efficiency and thus lower emission rates. In this paper, computation analysis of flow within a diesel engine cylinder with a twin swirl combustion chamber design throughout a full cycle is presented. The results obtained indicate that the effect of the twin swirl combustion chamber on the cold flow conditions is noteworthy and further analysis together with experiments may reveal information that may prove to be useful in further new designs. 展开更多
关键词 Cold Flow Analysis combustion chamber Design Internal combustion Engine Diesel Engine
下载PDF
Influence of Combustion Chamber Design Parameters and Intake Environments on Spark Ignition Engine Performance and Exhaust Gas Emission
10
作者 Ali S. Al-Shahrany Ahmed S. A. Hassan 《Open Journal of Applied Sciences》 2022年第6期930-943,共14页
In the present paper, the effect of the combustion chamber design parameters on the improvement of combustion efficiency (the heat generated inside the combustion chamber) and the enhancement in the pollution rates (h... In the present paper, the effect of the combustion chamber design parameters on the improvement of combustion efficiency (the heat generated inside the combustion chamber) and the enhancement in the pollution rates (heat emissions) from a four-stroke, spark-ignition engine has been studied experimentally and theoretically. Two different programs, Gaseq and Ansys, were used to simulate the effect of the combustion chamber shape, turbulent kinetic energy, intake temperature, intake pressure, parity ratio, compression ratio, and engine speed on reducing specific fuel consumption in the engine, reducing carbon dioxide emissions, and increasing overall engine efficiency. The results showed increasing the intake temperature increased the amount of heat produced in the combustion chamber. This leads to increases in the overall efficiency of the engine, but leads to increasing the carbon dioxide and nitrogen oxide emissions. Increasing the intake pressure has a positive effect on the combustion temperature and pressure, but it has a negative effect on carbon dioxide and nitrogen oxides. Raising the pressure ratio improved the overall efficiency of the engine by increasing the combustion heat, but increasing specific fuel consumption and emissions. Also, increasing the engine speed above the permissible limit has an adverse effect on the spraying speed due to the piston speed being higher than the flame speed, which leads to a reduction in the engine brake torque. An increase in the compression ratio leads to higher fluid pressure and output capacity, but combustion methods occur. An increase in the kinetic energy of the turbulence leads to good combustion. A bowl in a piston has the highest rate of rotation and rotation compared to flat and hemispherical pistons. That is, the design of the cylinder head of this type leads to an improvement in the combustion efficiency and thus the efficiency of the engine. 展开更多
关键词 Spark Ignition Engine Four Stroke combustion chamber Crank Angle EMISSION
下载PDF
Application of the porous medium combustion technology in the chamber reheating furnaces at Baosteel
11
作者 RAO Wentao GUO Shuihua LIN Yu 《Baosteel Technical Research》 CAS 2012年第2期60-63,共4页
The design of the porous medium combustion ( PMC) system which has been applied to chamber reheating furnaces is presented in this study and its main application effects are described in detail. Porous medium material... The design of the porous medium combustion ( PMC) system which has been applied to chamber reheating furnaces is presented in this study and its main application effects are described in detail. Porous medium materials are mainly ceramic ball sucked granular bed porous media and foam ceramic porous media. This study investigates the foam ceramic porous medium and a schematic diagram of the combustion inside this porous medium. The PMC takes a solid medium as its main heat exchange way,thus greatly improving the heat transfer efficiency. Judging from the application effects,the following conclusions have been made: the PMC technology can save more than 25% of energy with remarkable effects; the furnace temperature uniformity can be significantly enhanced; the porous media combustion technology can make the heating furnace design in a more compact way,reduce the time for heating up the furnace, improve the heating rate and reduce energy consumption. 展开更多
关键词 加热炉设计 多孔介质 燃烧技术 应用 会议厅 宝钢 泡沫陶瓷 固体培养基
下载PDF
Experimental Tests on a Pre-Heated Combustion Chamber for Ultra Micro Gas Turbine Device: Air/Fuel Ratio Evaluation
12
作者 Roberto Capata Kliton Kylykbashi +1 位作者 Alfonso Calabria Mario Di Veroli 《Engineering(科研)》 2016年第11期789-805,共17页
Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenie... Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models. 展开更多
关键词 Experimental Tests combustion chamber Ultra Micro Gas Turbine Fuel Consumption
下载PDF
The Impact of Flexible Element Inside of Intake Canal on Kinematics of Load in Combustion Chamber
13
作者 Piotr Piatkowski 《Computer Technology and Application》 2013年第10期538-542,共5页
关键词 燃烧室性能 运动学 发动机使用 室内 负荷 元素 柔性 运河
下载PDF
Combustion Characteristics in Growth Chamber for Verneuilgrown Rutile Crystal
14
作者 Xudong LIU Lei WANG +2 位作者 Huiyun YAN Xiaoguo BI Xudong SUN 《Research and Application of Materials Science》 2020年第1期59-66,共8页
Combustion characteristics of three-tube burner in growth chamber for preparation of single crystal by the Verneuil method were investigated,and the effects of nozzle structure and flow rate on the surface temperature... Combustion characteristics of three-tube burner in growth chamber for preparation of single crystal by the Verneuil method were investigated,and the effects of nozzle structure and flow rate on the surface temperature of molten cap were analyzed.The results showed that hydrogen flowed out from the nozzle diffused with inner and outer oxygen,and two flame produced in the center and near the wall of growth chamber.The surface temperature of molten cap were gradually reduced from the center outward.The temperature of molten cap decreased gradually with increasing the nozzle aperture of inner oxygen,and varied slightly with the diameter of hydrogen and outer oxygen nozzle.The temperature of molten cap decreased gradually with increasing the flow rate of inner and outer oxygen,while increased with the flow rate of hydrogen. 展开更多
关键词 rutile crystal growth chamber combustion SIMULATION
下载PDF
燃烧系统参数对商用车发动机燃烧和排放特性的影响研究
15
作者 雷基林 李臻卓 +3 位作者 刘懿 王伟超 宋国富 张海丰 《内燃机工程》 CAS CSCD 北大核心 2024年第2期54-63,74,共11页
为改善商用车发动机性能,采用计算流体力学(computational fluid dynamics,CFD)模拟、正交设计等方法,针对某商用车的燃烧室结构参数设计了4种新方案,并选取油束夹角、喷雾锥角、主喷正时等3个喷油参数开展多因素影响研究。结果表明:燃... 为改善商用车发动机性能,采用计算流体力学(computational fluid dynamics,CFD)模拟、正交设计等方法,针对某商用车的燃烧室结构参数设计了4种新方案,并选取油束夹角、喷雾锥角、主喷正时等3个喷油参数开展多因素影响研究。结果表明:燃烧室形状曲线向内收缩且最大半径增大的方案1燃烧室可提升缸内湍流特性,改善燃油浓度分布,使燃烧速度加快,油气混合更好,为最优方案。在喷油参数研究方案中,以碳烟(soot)排放为优化指标时,油束夹角对排放特性影响最大,最优匹配方案是油束夹角147°、喷雾锥角15°、主喷正时-1°,其缸内碳烟排放较原机下降13.91%,且NOx排放减少13.98%;以氮氧化物(nitrogen oxides,NOx)排放为优化指标时,主喷正时对排放特性影响最大,最优匹配方案是油束夹角160°、喷雾锥角25°、主喷正时-1°,其缸内NOx排放较原机降低37.79%。 展开更多
关键词 商用车 燃烧系统 燃烧室 喷油参数 燃烧特性 排放特性
下载PDF
大缸径柴油机燃烧系统优化模拟
16
作者 李成 田华 +2 位作者 黄永仲 隆武强 陈秉智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期25-31,共7页
为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸... 为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸内工作过程进行了计算流体力学模拟,计算了高压指示功和放热率相位,分析了缸内温度、反应过量空气系数和速度分布及演化。模拟结果表明:升级方案能够提高发动机热效率。增加喷孔数并减小孔径,可以在保持NOx排放基本不变的条件下提高高压指示功4.5%,降低碳烟排放约60%。采用“平顶”浅ω燃烧室与158°喷油夹角喷雾配合,油气混合气快速进入余隙并形成逆时针的漩涡流动,能够加速油气混合和燃烧过程,提高热效率。 展开更多
关键词 柴油机 燃油经济性 燃烧室 燃油喷射 模拟 优化 热效率 氮氧化物 碳烟
下载PDF
氨/氢燃料射流点火船用发动机燃烧特性
17
作者 魏胜利 张绍邦 +2 位作者 严书哲 张志成 倪士栋 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第5期124-132,共9页
为突破氨在发动机中的燃烧局限性,促进氨燃料高效快速燃烧,提出了一种利用氢气射流火焰点燃氨燃料的方案。通过向主动式预燃室供给氢气,进气道内预混氨/氢燃料,实现氨在大缸径船用发动机上的稳定高效燃烧。基于数值模拟计算方法,在改进... 为突破氨在发动机中的燃烧局限性,促进氨燃料高效快速燃烧,提出了一种利用氢气射流火焰点燃氨燃料的方案。通过向主动式预燃室供给氢气,进气道内预混氨/氢燃料,实现氨在大缸径船用发动机上的稳定高效燃烧。基于数值模拟计算方法,在改进了Otomo氨/氢机理基础上,探究了进气温度、掺混氢气的质量分数和主燃室当量比对氨/氢燃料着火与燃烧特性的影响。研究结果表明,射流火焰可以在主燃烧室形成燃烧所需的热力学环境和高活性热射流。在当量比为0.4、不掺混氢气的条件下,450 K进气温度可以实现氨燃料发动机的稀薄燃烧,在掺混氢气的质量分数较低时,射流点火对火焰发展促进作用更显著;掺混氢气的质量分数提高至10.0%可以使燃烧相位提前18°,但爆震风险增加;在进气温度为320 K和掺混氢气的质量分数为2.5%条件下,主燃室在当量比最小为0.45时可正常着火,但随着更接近理论空燃比的燃烧,指示热效率略有提升,主动预燃室氢射流点火的燃烧模式在实现氨发动机高效快速燃烧方面具有良好的潜力。 展开更多
关键词 氨/氢燃料 船用发动机 预燃室 射流点火 燃烧特性
下载PDF
基于Python的CO_(2)/O_(2)氛围下柴油燃烧火焰特征分析
18
作者 陈睿哲 刘永峰 +3 位作者 王龙 张璐 何旭 宋金瓯 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期165-173,共9页
为分析柴油在CO_(2)/O_(2)氛围下燃烧的火焰特征,利用光学定容燃烧室测试并拍摄了6种不同工况下的柴油燃烧过程.基于自编的Python代码对火焰图像进行后处理,提取出火焰浮起长度、红绿分量比、平均亮度、相关性系数、面积变化率和重叠率... 为分析柴油在CO_(2)/O_(2)氛围下燃烧的火焰特征,利用光学定容燃烧室测试并拍摄了6种不同工况下的柴油燃烧过程.基于自编的Python代码对火焰图像进行后处理,提取出火焰浮起长度、红绿分量比、平均亮度、相关性系数、面积变化率和重叠率等特征参数并进行分析.结果表明:在空气和CO_(2)/O_(2)氛围下,柴油火焰浮起长度和相关性均随燃烧进程先增大后减小再增大,平均亮度则先增大后减小,其在空气下和35%CO_(2)+65%O_(2)氛围下的峰值分别为210.75 px和138.89 px.在火焰发展阶段,红绿分量比保持在0.8~1.2之间,而在火焰熄灭阶段,随着CO_(2)浓度减小和O_(2)浓度增大,红绿分量比有所减小.与在空气下燃烧相比,柴油在CO_(2)/O_(2)氛围下的燃烧火焰形状更加细长,湍流现象更加明显,火焰浮起长度缩短,平均亮度下降. 展开更多
关键词 PYTHON 柴油 CO_(2)/O_(2)氛围 火焰特征 定容燃烧室
下载PDF
基于定容燃烧弹的单孔主动预燃室几何参数对燃烧特性的影响研究
19
作者 刘人赫 刘逸晖 +2 位作者 缪新轲 邓俊 李理光 《汽车技术》 CSCD 北大核心 2024年第2期39-46,共8页
基于定容燃烧弹试验平台,采用燃烧可视化方法研究了预混式单孔主动预燃室的几何参数对预燃室点火特性的影响。在火焰发展初期的定压燃烧过程中,将从点火开始到火焰面积达到燃烧弹可视窗口面积一半所用的时间定义为初期火焰发展时间,作... 基于定容燃烧弹试验平台,采用燃烧可视化方法研究了预混式单孔主动预燃室的几何参数对预燃室点火特性的影响。在火焰发展初期的定压燃烧过程中,将从点火开始到火焰面积达到燃烧弹可视窗口面积一半所用的时间定义为初期火焰发展时间,作为衡量不同几何参数下主动预燃室点火效果的参考指标:在不同喷孔孔径(2.0~4.0 mm)、不同预燃室通道内径(3.0~5.5 mm)、不同下端开口角度(0°~75°)的试验条件下,初期火焰发展时间的最大差异分别为9.3 ms、6.8 ms、2.9 ms,最终得出3个几何参数对单孔主动预燃室点火效果的影响程度排序由大到小依次为喷孔孔径、预燃室通道内径、下端开口角度。 展开更多
关键词 主动预燃室 定容燃烧弹 燃烧可视化 燃烧特性
下载PDF
正十六烷引燃甲烷预混合气可视化实验研究
20
作者 崔泽川 张晓磊 +3 位作者 银硕 郁晓健 田江平 隆武强 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期284-290,共7页
为探究环境温度、甲烷预混时间以及引燃燃料喷射压力对正十六烷引燃甲烷预混合气着火及火焰传播特性的影响,本文利用高速摄影技术及阴影拍摄方法,基于定容光学测试系统进行了可视化实验。研究结果表明:提高环境温度,引燃燃料滞燃期缩短... 为探究环境温度、甲烷预混时间以及引燃燃料喷射压力对正十六烷引燃甲烷预混合气着火及火焰传播特性的影响,本文利用高速摄影技术及阴影拍摄方法,基于定容光学测试系统进行了可视化实验。研究结果表明:提高环境温度,引燃燃料滞燃期缩短,火焰发展速率增加并出现主燃区外预混合气局部着火;预混时间较短时,燃烧产生的碳烟较多,火焰发展速率随混合时间的增加而减小,当预混时间较长时,火焰发展速率趋于稳定;提高引燃燃料喷射压力,引燃燃料喷雾贯穿距离增大,滞燃期缩短,起始着火点位置发生变化,火焰发展速率增加。 展开更多
关键词 双燃料 甲烷 引燃喷射 预混燃烧 燃烧特性 阴影法 可视化 定容弹
下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部