This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotar...This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.展开更多
Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method ...Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps展开更多
With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similari...With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.展开更多
Jinchuan nickel mine is the largest nickel mine in China. Cut-and-fill mining method with high density cementing materials is used in the mine. The original mining design divided the mining operation into two steps. T...Jinchuan nickel mine is the largest nickel mine in China. Cut-and-fill mining method with high density cementing materials is used in the mine. The original mining design divided the mining operation into two steps. The first step stopped the mining rooms and the second step stopped the pillars. Because the two-step method made big trouble for finally mining pillars and strongly limited the mining speed and production, it was successfully changed to a continuous cut-and-fill method without pillars. However, the mining operation in the mine has been down to 800 m and the mining condition is getting worse and more complicated. Through systematical field investigations and 3-D FEM analysis, it is proved that the mining method without pillars is feasible for mining deeper orebodies in Jinchuan nickel mine.展开更多
The room and pillar method is usually used to extract coal from shallowly buried seams with thin bedrock. This results in a very low production efficiency and in a low degree of extraction. In recent years short-wall ...The room and pillar method is usually used to extract coal from shallowly buried seams with thin bedrock. This results in a very low production efficiency and in a low degree of extraction. In recent years short-wall continuous mechanical mining has been extensively used in many situations except shallowly buried coal seams with thin bedrock. The principles governing movement of the overlying strata above the 2-2 coal seam were deduced from in-situ experience, laboratory data, calculations and computer simulations. The thicknesses of the bedrock in the Shendong Coal Field where the coal is shallowly buried are classified into 5 types: <10 m, 10–15 m, 15–25 m, 25–35 m and >35 m, which was done using fuzzy clustering results. A series of reasonable, relative parameters in each category have been calculated and analyzed. One proposed way to perform short-wall continuous mechanical mining in shallowly buried coal seams is given. This is significant for coal mines with similar geological conditions.展开更多
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the...Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.展开更多
Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentia...Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.展开更多
With the explosive growth of data available, there is an urgent need to develop continuous data mining which reduces manual interaction evidently. A novel model for data mining is proposed in evolving environment. Fir...With the explosive growth of data available, there is an urgent need to develop continuous data mining which reduces manual interaction evidently. A novel model for data mining is proposed in evolving environment. First, some valid mining task schedules are generated, and then au tonomous and local mining are executed periodically, finally, previous results are merged and refined. The framework based on the model creates a communication mechanism to in corporate domain knowledge into continuous process through ontology service. The local and merge mining are transparent to the end user and heterogeneous data ,source by ontology. Experiments suggest that the framework should be useful in guiding the continuous mining process.展开更多
The present problem of mining of narrow and gentle dip vein was analyzed. A new technique of rapidly following curtain filling was put forward. The results show that the new technique is feasible, has the characterist...The present problem of mining of narrow and gentle dip vein was analyzed. A new technique of rapidly following curtain filling was put forward. The results show that the new technique is feasible, has the characteristic to make the whole curtain wall filter, makes relative density of the filling tailings slurry reach saturation of 78.0% 80.0% in 25 min, and keeps the roof of mined out space stable in 60 min. The new technique of the rapidly following curtain filling has solved the difficult problem of the filling body filtering slowly and promptly controlling underground pressure, which cannot be solved in traditional ways.展开更多
基金support from the National Natural Science Foundation of China(Grant No.41827806)Liaoning Provincial Science and Technology Program(Grant No.2022JH2/101300109).
文摘This article introduces a high-power microwave mechanical integrated continuous mining device,which can achieve synchronous cutting of hard rocks by microwave and machinery.The device includes a cutting system,a rotary translation system,a loading system,a high-power microwave system,and a control and monitoring system.The technology of“master-slave follow-up”disc cutter alternating side cutting of rock was proposed,which could improve the effectiveness of rock breaking.The integrated structure of a microwave-cut system was then proposed,and synchronous motion of the microwave-cut system and adjustment of the loading system could be realized.The automatic adjustment technology of the microwave working distance was developed to dynamically control the optimal microwave working distance.The basic functions of the equipment were verified by tests.By comparing the two types of disk cutters,it is found that the master-slave follow-up disk cutter can improve significantly the dust removal effect and rock breaking efficiency in rock breaking process versus the conventional large disc cutter.Cutting tests of slate with or without microwave were conducted using a master-slave follow-up disk cutter.The results show that the cutting patterns of slates change from intermittent chunks(without microwave irradiation)to persistent debris(with microwave irradiation),and the cutting speed is significantly improved(170%).The development of the device provides a scientific basis for changing the conventional mining technology of metal mines and realizing the mechanical continuous mining in hard metal mines.
基金Projects (50934006, 51074178) supported by the National Natural Science Foundation of ChinaProject (2010QZZD001) supported by the Fundamental Research Funds for the Central Universities of China
文摘Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps
基金Project(50490274) supported by the National Natural Science Foundation of ChinaProject(20050533035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(1343-77236) supported by the Doctor Degree Paper Innovation Engineering of Central South University, China
文摘With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.
文摘Jinchuan nickel mine is the largest nickel mine in China. Cut-and-fill mining method with high density cementing materials is used in the mine. The original mining design divided the mining operation into two steps. The first step stopped the mining rooms and the second step stopped the pillars. Because the two-step method made big trouble for finally mining pillars and strongly limited the mining speed and production, it was successfully changed to a continuous cut-and-fill method without pillars. However, the mining operation in the mine has been down to 800 m and the mining condition is getting worse and more complicated. Through systematical field investigations and 3-D FEM analysis, it is proved that the mining method without pillars is feasible for mining deeper orebodies in Jinchuan nickel mine.
基金Projects NCET-05-0480 supported by the Program for New Century Excellent Talents in University07KF09 by the 2007 Research Fund of the State Key Laboratory of Coal Resources and Mine Safety
文摘The room and pillar method is usually used to extract coal from shallowly buried seams with thin bedrock. This results in a very low production efficiency and in a low degree of extraction. In recent years short-wall continuous mechanical mining has been extensively used in many situations except shallowly buried coal seams with thin bedrock. The principles governing movement of the overlying strata above the 2-2 coal seam were deduced from in-situ experience, laboratory data, calculations and computer simulations. The thicknesses of the bedrock in the Shendong Coal Field where the coal is shallowly buried are classified into 5 types: <10 m, 10–15 m, 15–25 m, 25–35 m and >35 m, which was done using fuzzy clustering results. A series of reasonable, relative parameters in each category have been calculated and analyzed. One proposed way to perform short-wall continuous mechanical mining in shallowly buried coal seams is given. This is significant for coal mines with similar geological conditions.
基金jointly supported by the State Key Research Development Program of China (Grant No.2016YFC0600706)the National Natural Science Foundation of China (Grant Nos.41630642 and 11472311)
文摘Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.
文摘Knowledge of the airflow patterns and methane distributions at a continuous miner face under different ventilation conditions can minimize the risks of explosion and injury to miners by accurately forecasting potentially hazardous face methane levels. This study focused on validating a series of computational fluid dynamics(CFD) models using full-scale ventilation gallery data that assessed how curtain setback distance impacted airflow patterns and methane distributions at an empty mining face(no continuous miner present). Three CFD models of face ventilation with 4.6, 7.6 and 10.7 m(15, 25, and 35 ft) blowing curtain setback distances were constructed and validated with experimental data collected in a full-scale ventilation test facility. Good agreement was obtained between the CFD simulation results and this data.Detailed airflow and methane distribution information are provided. Elevated methane zones at the working faces were identified with the three curtain setback distances. Visualization of the setback distance impact on the face methane distribution was performed by utilizing the post-processing capability of the CFD software.
基金Supported by the National Natural Science Foun-dation of China (60173058 ,70372024)
文摘With the explosive growth of data available, there is an urgent need to develop continuous data mining which reduces manual interaction evidently. A novel model for data mining is proposed in evolving environment. First, some valid mining task schedules are generated, and then au tonomous and local mining are executed periodically, finally, previous results are merged and refined. The framework based on the model creates a communication mechanism to in corporate domain knowledge into continuous process through ontology service. The local and merge mining are transparent to the end user and heterogeneous data ,source by ontology. Experiments suggest that the framework should be useful in guiding the continuous mining process.
文摘The present problem of mining of narrow and gentle dip vein was analyzed. A new technique of rapidly following curtain filling was put forward. The results show that the new technique is feasible, has the characteristic to make the whole curtain wall filter, makes relative density of the filling tailings slurry reach saturation of 78.0% 80.0% in 25 min, and keeps the roof of mined out space stable in 60 min. The new technique of the rapidly following curtain filling has solved the difficult problem of the filling body filtering slowly and promptly controlling underground pressure, which cannot be solved in traditional ways.