For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of ...For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.展开更多
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve...In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.展开更多
In this article, the convection dominated convection-diffusion problems with the periodic micro-structure are discussed. A two-scale finite element scheme based on the homogenization technique for this kind of problem...In this article, the convection dominated convection-diffusion problems with the periodic micro-structure are discussed. A two-scale finite element scheme based on the homogenization technique for this kind of problems is provided. The error estimates between the exact solution and the approximation solution, of the homogenized equation or the two-scale finite element scheme are analyzed. It is shown that the scheme provided in this article is convergent for any fixed diffusion coefficient 5, and it may be convergent independent of δ under some conditions. The numerical results demonstrating the theoretical results are presented in this article.展开更多
In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local suppo...In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.展开更多
This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error esti...This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h.展开更多
In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of R...In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly,we analyze the stability and error estimates of the corresponding fully discrete schemes.The fully discrete schemes are proved to be stable if the time-stepτ≤τ0,whereτ0 is a constant independent of the mesh-size h.Furthermore,by the aid of a special projection and a careful estimate for the convection term,the optimal error estimate is also obtained for the third order fully discrete scheme.Numerical experiments are displayed to verify the theoretical results.展开更多
In the present paper the edge stabilization technique is applied to a convection-diffusion problem with exponential boundary layers on the unit square, using a Shishkin mesh with bilinear finite elements in the layer ...In the present paper the edge stabilization technique is applied to a convection-diffusion problem with exponential boundary layers on the unit square, using a Shishkin mesh with bilinear finite elements in the layer regions and linear elements on the coarse part of the mesh. An error bound is proved for ‖πu-u^h‖Е, where πu is some interpolant of the solution u and uh the discrete solution. This supercloseness result implies an optimal error estimate with respect to the L2 norm and opens the door to the application of postprocessing for improving the discrete solution.展开更多
An operator-splitting algorithm for the three-dimensional convection-diffusion equa- tion is presented.The flow region is discretized into tetrahedronal elements which are fixed in time. The transport equation is spli...An operator-splitting algorithm for the three-dimensional convection-diffusion equa- tion is presented.The flow region is discretized into tetrahedronal elements which are fixed in time. The transport equation is split into two successive initial value problems:a pure convection problem and a pure diffusion problem.For the pure convection problem,solutions are found by the method of characteristiCS.The solution algorithm involves tracing the characteristic lines backwards in time from a vertex of an element to an interior point.A cubic polynomial is used to interpolate the concentration and its derivatives within each element.For the diffusion problem,an explicit finite element algorithm is employed.Numerical examples are given which agree well with the analytical solutions.展开更多
The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence or...The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter δKwhich has nothing to do with perturbation parameter εappeared in the problem under considered, the subdivision mesh size hKand the inverse estimate coefficient μin finite element space.展开更多
Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Applicati...Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Application of two kinds of Schwartz alternating procedure to solve the numerical approximation problem; Numerical results.展开更多
With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for th...With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.展开更多
In this paper, a new DG method was designed to solve the model problem of the one-dimensional singularly-perturbed convection-diffusion equation. With some special chosen numerical traces, the existence and uniqueness...In this paper, a new DG method was designed to solve the model problem of the one-dimensional singularly-perturbed convection-diffusion equation. With some special chosen numerical traces, the existence and uniqueness of the DG solution is provided. The superconvergent points inside each element are observed. Particularly, the 2p + 1-order superconvergence and even uniform superconvergence under layer-adapted mesh are observed numerically.展开更多
A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their c...A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.展开更多
In this paper we present the error estimate for the fully discrete local discontinuous Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet boundary condition in one dimension. The time ...In this paper we present the error estimate for the fully discrete local discontinuous Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet boundary condition in one dimension. The time is advanced by the third order explicit total variation diminishing Runge-Kutta method under the reasonable temporal-spatial condition as general. The optimal error estimate in both space and time is obtained by aid of the energy technique, if we set the numerical flux and the intermediate boundary condition properly.展开更多
We consider a singularly perturbed semilinear convection-diffusion problem with a boundary layer of attractive turning-point type. It is shown that its solution can be decomposed into a regular solution component and ...We consider a singularly perturbed semilinear convection-diffusion problem with a boundary layer of attractive turning-point type. It is shown that its solution can be decomposed into a regular solution component and a layer component. This decomposition is used to analyse the convergence of an upwinded finite difference scheme on Shishkin meshes.展开更多
BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood....BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.展开更多
The application of a standard Galerkin finite element method for convection-diffusion problems leads to oscillations in the discrete solution, therefore stabilization seems to be necessary. We discuss several recent s...The application of a standard Galerkin finite element method for convection-diffusion problems leads to oscillations in the discrete solution, therefore stabilization seems to be necessary. We discuss several recent stabilization methods, especially its combination with a Galerkin method on layer-adapted meshes. Supercloseness results obtained allow an improvement of the discrete solution using recovery techniques.展开更多
The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional...The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.展开更多
A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate s...A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2.展开更多
基金supported by National Natural Science Foundation of China(11771257)the Shandong Provincial Natural Science Foundation of China(ZR2023YQ002,ZR2023MA007,ZR2021MA004)。
文摘For singularly perturbed convection-diffusion problems,supercloseness analysis of the finite element method is still open on Bakhvalov-type meshes,especially in the case of 2D.The difficulties arise from the width of the mesh in the layer adjacent to the transition point,resulting in a suboptimal estimate for convergence.Existing analysis techniques cannot handle these difficulties well.To fill this gap,here a novel interpolation is designed delicately for the smooth part of the solution,bringing about the optimal supercloseness result of almost order 2 under an energy norm for the finite element method.Our theoretical result is uniform in the singular perturbation parameterεand is supported by the numerical experiments.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
基金the NSFC grant 11871428the Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011Qiang Zhang:Research supported by the NSFC grant 11671199。
文摘In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.
基金the Special Funds for Major State Basic Research Projects (No.G2000067102) National Natural Science Foundation of China (No.60474027).
文摘In this article, the convection dominated convection-diffusion problems with the periodic micro-structure are discussed. A two-scale finite element scheme based on the homogenization technique for this kind of problems is provided. The error estimates between the exact solution and the approximation solution, of the homogenized equation or the two-scale finite element scheme are analyzed. It is shown that the scheme provided in this article is convergent for any fixed diffusion coefficient 5, and it may be convergent independent of δ under some conditions. The numerical results demonstrating the theoretical results are presented in this article.
基金Project (No. 10572128) supported by the National Natural ScienceFoundation of China
文摘In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.
基金Supported by the National Natural Science Foundation of China(10471103)
文摘This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h.
基金Research sponsored by NSFC grants 11871428 and 12071214Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011+1 种基金Research is supported in part by NSFC grants U1930402the fellowship of China Postdoctoral Science Foundation(No.2020TQ0030).
文摘In this paper,we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations.Then,coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly,we analyze the stability and error estimates of the corresponding fully discrete schemes.The fully discrete schemes are proved to be stable if the time-stepτ≤τ0,whereτ0 is a constant independent of the mesh-size h.Furthermore,by the aid of a special projection and a careful estimate for the convection term,the optimal error estimate is also obtained for the third order fully discrete scheme.Numerical experiments are displayed to verify the theoretical results.
文摘In the present paper the edge stabilization technique is applied to a convection-diffusion problem with exponential boundary layers on the unit square, using a Shishkin mesh with bilinear finite elements in the layer regions and linear elements on the coarse part of the mesh. An error bound is proved for ‖πu-u^h‖Е, where πu is some interpolant of the solution u and uh the discrete solution. This supercloseness result implies an optimal error estimate with respect to the L2 norm and opens the door to the application of postprocessing for improving the discrete solution.
文摘An operator-splitting algorithm for the three-dimensional convection-diffusion equa- tion is presented.The flow region is discretized into tetrahedronal elements which are fixed in time. The transport equation is split into two successive initial value problems:a pure convection problem and a pure diffusion problem.For the pure convection problem,solutions are found by the method of characteristiCS.The solution algorithm involves tracing the characteristic lines backwards in time from a vertex of an element to an interior point.A cubic polynomial is used to interpolate the concentration and its derivatives within each element.For the diffusion problem,an explicit finite element algorithm is employed.Numerical examples are given which agree well with the analytical solutions.
基金Supported by the National Natural Science Foundation of China(No.11271340)
文摘The streamline-diffusion method of the lowest order nonconforming rectangular finite element is proposed for convection-diffusion problem. By making full use of the element's special property, the same convergence order as the previous literature is obtained. In which, the jump terms on the boundary are added to bilinear form with simple user-chosen parameter δKwhich has nothing to do with perturbation parameter εappeared in the problem under considered, the subdivision mesh size hKand the inverse estimate coefficient μin finite element space.
基金Project supported by the Natural Science Foundation of China Grant No. 19771050, No. 10171052 by the Foundation of National Key Laboratory of Computational Physics.
文摘Presents a study that examined the application of an overlapping domain decomposition method to the solution of time-dependent convection-diffusion problems. Background on the Schwartz alternating procedure; Application of two kinds of Schwartz alternating procedure to solve the numerical approximation problem; Numerical results.
基金Natural Science Foundation of Gansu Province of China
文摘With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.
基金the National Natural Science Foundation of China(No.10571053)Programme for New Century Excellent Talents in University(NCET-06-0712)the Excellent Youth Project of the Education Department of Hunan Province of China(0513039)
文摘In this paper, a new DG method was designed to solve the model problem of the one-dimensional singularly-perturbed convection-diffusion equation. With some special chosen numerical traces, the existence and uniqueness of the DG solution is provided. The superconvergent points inside each element are observed. Particularly, the 2p + 1-order superconvergence and even uniform superconvergence under layer-adapted mesh are observed numerically.
文摘A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.
文摘In this paper we present the error estimate for the fully discrete local discontinuous Galerkin algorithm to solve the linear convection-diffusion equation with Dirichlet boundary condition in one dimension. The time is advanced by the third order explicit total variation diminishing Runge-Kutta method under the reasonable temporal-spatial condition as general. The optimal error estimate in both space and time is obtained by aid of the energy technique, if we set the numerical flux and the intermediate boundary condition properly.
文摘We consider a singularly perturbed semilinear convection-diffusion problem with a boundary layer of attractive turning-point type. It is shown that its solution can be decomposed into a regular solution component and a layer component. This decomposition is used to analyse the convergence of an upwinded finite difference scheme on Shishkin meshes.
基金Supported by the National Natural Science Foundation of China,No.81330068.
文摘BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.
文摘The application of a standard Galerkin finite element method for convection-diffusion problems leads to oscillations in the discrete solution, therefore stabilization seems to be necessary. We discuss several recent stabilization methods, especially its combination with a Galerkin method on layer-adapted meshes. Supercloseness results obtained allow an improvement of the discrete solution using recovery techniques.
基金Project supported by the National Natural Science Foundation of China(Nos.12250410244,11872151)the Jiangsu Province Education Development Special Project-2022 for Double First-ClassSchool Talent Start-up Fund of China(No.2022r109)the Longshan Scholar Program of Jiangsu Province of China。
文摘The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.
文摘A multistep characteristic finite difference method is given on the basis ofthe linear and quadratic interpolations for solving two-dimensional nonlinear convection-diffusion problems. The convergence of approximate solutions is obtained in L2.