期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy:preparation, performance, and mechanisms
1
作者 Yi-Fan Yan Shu-Qing Kou +4 位作者 Hong-Yu Yang Shi-Li Shu Feng Qiu Qi-Chuan Jiang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期200-234,共35页
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e... Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields. 展开更多
关键词 copper matrix composites advanced powder metallurgy model prediction particle characteristics strengthening mechanism
下载PDF
Copper Matrix Composites Reinforced with Nanometer Alumina Particle 被引量:1
2
作者 Wu, JJ Li, GB +2 位作者 Zhang, Y Jiang, ZX Lei, TQ 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第2期143-146,共4页
The microstructure and properties of the oxide particle dispersion strengthened composite fabricated by internal oxidation method have been studied. Using nitrogen base atmosphere and a new process flow we can improve... The microstructure and properties of the oxide particle dispersion strengthened composite fabricated by internal oxidation method have been studied. Using nitrogen base atmosphere and a new process flow we can improve the quality of the MMCs and decrease the cost of the composites. The size of alumina is in the nanometer order of magnitude and the particles are well distributed. Under the condition of having good electrical conductivity, the composites have 1to 2 times higher mechanical properties than those of pure Cu. 展开更多
关键词 OO copper matrix composites Reinforced with Nanometer Alumina Particle CU
下载PDF
Significant strengthening of copper-based composites using boron nitride nanotubes
3
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
Effect of reinforcement content on the adhesive wear behavior of Cu10Sn5Ni/Si3N4 composites produced by stir casting 被引量:1
4
作者 K.Sanesh S.Shiam Sunder N.Radhika 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期1052-1060,共9页
The main objective of this paper was to fabricate Cu_(10)Sn_5Ni alloy and its composites reinforced with various contents of Si_3N_4 particles(5wt%, 10wt%, and 15wt%) and to investigate their dry sliding wear behavior... The main objective of this paper was to fabricate Cu_(10)Sn_5Ni alloy and its composites reinforced with various contents of Si_3N_4 particles(5wt%, 10wt%, and 15wt%) and to investigate their dry sliding wear behavior using a pin-on-disk tribometer. Microstructural examinations of the specimens revealed a uniform dispersion of Si_3N_4 particles in the copper matrix. Wear experiments were performed for all combinations of parameters, such as load(10, 20, and 30 N), sliding distance(500, 1000, and 1500 m), and sliding velocity(1, 2, and 3 m/s), for the alloy and the composites. The results revealed that wear rate increased with increasing load and increasing sliding distance, whereas the wear rate decreased and then increased with increasing sliding velocity. The primary wear mechanism encountered at low loads was mild adhesive wear, whereas that at high loads was severe delamination wear. An oxide layer was formed at low velocities, whereas a combination of shear and plastic deformation occurred at high velocities. The mechanism at short sliding distances was ploughing action of Si_3N_4 particles, which act as protrusions; by contrast, at long sliding distances, direct metal–metal contact occurred. Among the investigated samples, the Cu/10wt% Si_3N_4 composite exhibited the best wear resistance at a load of 10 N, a velocity of 2 m/s, and a sliding distance of 500 m. 展开更多
关键词 copper matrix composites stir casting adhesive wear wear mechanisms
下载PDF
Study of metal-ceramic WC/Cu nano-wear behavior and strengthening mechanism
5
作者 郑敏 陈杰 +5 位作者 朱宗孝 曲定峰 陈卫华 吴卓 王林军 马学忠 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期549-560,共12页
In view of the inherent poor tribological properties of copper,the reinforcement of copper matrix composites with WC particles presents a promising research area with significant industrial influence.Therefore,in the ... In view of the inherent poor tribological properties of copper,the reinforcement of copper matrix composites with WC particles presents a promising research area with significant industrial influence.Therefore,in the present study,a molecular dynamics approach is used to simulate the process of repeated friction of diamond grinding balls on WC/Cu composites,and the friction force,friction coefficient,abrasion depth,wear rate,abrasion morphology,von-Mises stress,internal defects,workpiece energy,and performance comparison of different layer thicknesses are systematically investigated in the multiple friction process.It is found that the fluctuation amplitude of friction force,friction coefficient,and abrasion depth are smaller and the fluctuation frequency is larger during the initial friction,whereas near the WC phase,there appears extreme values of the above parameters and the von-Mises stress is highly concentrated while the workpiece energy contonues to increase.In the case of the repeated friction,with the increase of friction times,the friction force,friction coefficient,and abrasion depth fluctuation amplitude increase,the fluctuation frequency decreases,the workpiece energy reaches an extreme value near the WC phase,and a large number of dislocations plug,therefore,the region is strengthened.As the distance between the grinding ball and the WC phase decreases,the more obvious the strengthening effect,the stronger the ability of workpiece to resist the wear will be. 展开更多
关键词 molecular dynamics repetitive friction copper matrix composites REINFORCEMENT
原文传递
Effect of tungsten carbide particles on microstructure and mechanical properties of Cu alloy composite bit matrix
6
作者 Ding-qian Dong Feng-yuan He +5 位作者 Xin-hui Chen Hui Li Kai-hua Shi Hui-wen Xiong Xin Xiang Li Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第2期519-530,共12页
Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungst... Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred. 展开更多
关键词 Polycrystalline diamond compact Pressureless vacuum infiltration copper alloy composite bit matrix Microstructure characterization Abrasive wear behavior
原文传递
Hybrid effect on mechanical properties and high-temperature performance of copper matrix composite reinforced with micro-nano dual-scale particles
7
作者 Xingde Zhang Yihui Jiang +3 位作者 Fei Cao Tian Yang Fan Gao Shuhua Liang 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第5期94-103,共10页
A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature ... A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature performances was studied from macro and micro perspectives,respectively.The hybrid of dual-scale particles can make the strain distribution of the composite at the early deformation stage more uniform and delay the strain concentration caused by the HfB_(2) particle.The dislocation pinning of HfB_(2) particles and the coherent strengthening of Cu_(5) Hf nanoprecipitates simultaneously play a strengthening role,but the strength of the hybrid composite is not a simple superposition of two strengthening mod-els.In addition,both Cu_(5) Hf nanoprecipitates and HfB_(2) microparticles contribute to the high-temperature performance of the composite,the growth and phase transition of nanoprecipitates at high temperature will reduce their contribution to strength,while the stable HfB_(2) particles can inhibit the coarsening of matrix grains and maintain the high-density geometrically necessary dislocations(GNDs)in the matrix,which ensures more excellent high-temperature resistance of the hybrid composite.As a result,the hy-brid structure can simultaneously possess the advantages of multiple reinforcements and make up for the shortcomings of each other.Finally,a copper matrix composite with high strength,high conductivity,and excellent high-temperature performance is displayed. 展开更多
关键词 copper matrix composite HfB 2 particles Hybrid effect High strength and high conductivity High-temperature performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部