This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulat...This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.展开更多
Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1...Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator.展开更多
State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertain...State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertainty.Much of the inter-model spread is driven by responses to surface heat perturbations.This study mainly focuses on the response of the ocean to a surface heat flux perturbation F,as prescribed by the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP).The results of ocean model were compared with those of a CGCM with the same ocean component.On the global scale,the changes in global mean temperature,ocean heat content(OHC),and steric sea level(SSL)simulated in the OGCM are generally consistent with CGCM simulations.Differences in changes in ocean temperature,OHC,and SSL between the two models primarily occur in the Arctic and Atlantic Oceans(AA)and the Southern Ocean(SO)basins.In addition to the differences in surface heat flux anomalies between the two models,differences in heat exchange between basins also play an important role in the inconsistencies in ocean climate changes in the AA and SO basins.These discrepancies are largely due to both the larger initial value and the greater weakening change of the Atlantic meridional overturning circulation(AMOC)in CGCM.The greater weakening of the AMOC in the CGCM is associated with the atmosphere–ocean feedback and the lack of a restoring salinity boundary condition.Furthermore,differences in surface salinity boundary conditions between the two models contribute to discrepancies in SSL changes.展开更多
An atmosphere-vegetation interaction model (AVIM) has been coupled with a nine-layer General Cir culation Model (GCM) of Institute of Atmospheic Physics / State Key Laboratory of Numerical Modeling for Atmospheric Sci...An atmosphere-vegetation interaction model (AVIM) has been coupled with a nine-layer General Cir culation Model (GCM) of Institute of Atmospheic Physics / State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/ LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. AVIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/ LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon gitude 7.5?and latitude 4.5? the vegetation is given a high resolution of 1.5?by 1.5?to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis.Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.展开更多
The ECHAM5 model is coupled with the widely used Common Land Model(CoLM). ECHAM5 is a state-of-theart atmospheric general circulation model incorporated into the integrated weather and climate model of the Chinese Aca...The ECHAM5 model is coupled with the widely used Common Land Model(CoLM). ECHAM5 is a state-of-theart atmospheric general circulation model incorporated into the integrated weather and climate model of the Chinese Academy of Meteorological Sciences(CAMS-CSM). Land surface schemes in ECHAM5 are simple and do not provide an adequate representation of the vegetation canopy and snow/frozen soil processes. Two AMIP(Atmospheric Model Intercomparison Project)-type experiments using ECHAM5 and ECHAM5-CoLM are run over 30 yr and the results are compared with reanalysis and observational data. It is found that the pattern of land surface temperature simulated by ECHAM5-CoLM is significantly improved relative to ECHAM5. Specifically, the cold bias over Eurasia is removed and the root-mean-square error is reduced in most regions. The seasonal variation in the zonal mean land surface temperature and the in situ soil temperature at 20-and 80-cm depths are both better simulated by ECHAM5-CoLM. ECHAM5-CoLM produces a more reasonable spatial pattern in the soil moisture content, whereas ECHAM5 predicts much drier soils. The seasonal cycle of soil moisture content from ECHAM5-CoLM is a better match to the observational data in six specific regions. ECHAM5-CoLM reproduces the observed spatial patterns of both sensible and latent heat fluxes. The strong positive bias in precipitation over land is reduced in ECHAM5-CoLM, especially over the southern Tibetan Plateau and middle–lower reaches of the Yangtze River during the summer monsoon rainy season.展开更多
Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectiv...Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectively(called TP FORC and NTP FORC hereinafter). Comparison shows that,to some extent,the existence of the Tibetan Plateau orography weakens or restrains(strengthens or facilitates)the formation of the anomalous circulation of Asian monsoon during El Nino(La Nina)period.Opposite results are found in the uncoupled AGCM simulation.展开更多
Seasonal changes exhibit climate changes, so models can predict future climate change accurately only if they can reproduce seasonal cycle accu-rately. Further, seasonal changes are much larger than the changes even i...Seasonal changes exhibit climate changes, so models can predict future climate change accurately only if they can reproduce seasonal cycle accu-rately. Further, seasonal changes are much larger than the changes even in long period of centuries. Thus it is unwise to ignore large ones compared to small climate change. In this paper, we determine how accurately a suite of ten coupled general circulation models reproduce the observed seasonal cycle in rainfall of the tropics. The seasonal cycles in rainfall of global tropics are known as monsoons. We found that the models can reasonably reproduce the seasonal cycle in rainfall, thus are useful in climate prediction and simulation of global monsoons.展开更多
The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Proje...The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system mod- els, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main compo- nents and supporting elements identified by the US National Strategy for Advancing Climate Modeling.展开更多
The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general...The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For E1 Nino developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipita- tion anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during E1 Nifio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simu- late the asymmetry of the wintertime circulation anomalies over the WNP between E1 Nifio and La Nifia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nifia is generally symmetric about the WNPAC associated with E1 Nifio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nifia events decay much faster than observed. In the observation, the WNPAC maintains throughout the E1 Nifio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basin- wide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.展开更多
We present an overview of the El Ni?o–Southern Oscillation(ENSO) stability simulation using the Chinese Academy of Meteorological Sciences climate system model(CAMS-CSM). The ENSO stability was quantified based on th...We present an overview of the El Ni?o–Southern Oscillation(ENSO) stability simulation using the Chinese Academy of Meteorological Sciences climate system model(CAMS-CSM). The ENSO stability was quantified based on the Bjerknes(BJ) stability index. Generally speaking, CAMS-CSM has the capacity of reasonably representing the BJ index and ENSO-related air–sea feedback processes. The major simulation biases exist in the underestimated thermodynamic damping and thermocline feedbacks. Further diagnostic analysis reveals that the underestimated thermodynamic feedback is due to the underestimation of the shortwave radiation feedback, which arises from the cold bias in mean sea surface temperature(SST) over central–eastern equatorial Pacific(CEEP). The underestimated thermocline feedback is attributed to the weakened mean upwelling and weakened wind–SST feedback(μ_a) in the model simulation compared to observation. We found that the weakened μ_a is also due to the cold mean SST over the CEEP.The study highlights the essential role of reasonably representing the climatological mean state in ENSO simulations.展开更多
The diversity of surface-flux perturbations,especially for heat-flux perturbations,notably leads to uncertainties surrounding the responses of ocean climate under global warming scenarios projected by climate/Earth sy...The diversity of surface-flux perturbations,especially for heat-flux perturbations,notably leads to uncertainties surrounding the responses of ocean climate under global warming scenarios projected by climate/Earth system models.However,when imposing heat-flux perturbations on the models,strong feedback persists between the atmosphere and the ocean,resulting in nearly doubled heat-flux perturbation over the North Atlantic(NA).Herein,quantitative evaluation of the influences of magnitude change of heat-flux perturbations over the NA on the changes in the Atlantic Meridional Overturning Circulation(AMOC),ocean heat uptake(OHU)and dynamic sea level(DSL)has been conducted by analysis of eight coupled model responses to the heat-flux perturbation experiments in the Flux-Anomaly-Forced Model Inter-comparison Project.It has been demonstrated that the magnitude of the AMOC change is extremely sensitive to the magnitude change of imposed NA heat-flux perturbation,and the weakening amplitude of the AMOC is nearly halved as the imposed heat-flux perturbation F is halved over the NA.The most remarkable responses of both DSL and OHU to the magnitude changes of NA heat-flux perturbation have been primarily found in the Atlantic and Arctic basins,especially for the NA region.Both the added ocean heat uptake(OHUa)and redistributed ocean heat uptake(OHUr)play key roles in OHU changes among the various NA heat-flux perturbation experiments.The magnitude change of NA-mean OHUa is almost linearly related to the imposed NA heat-flux perturbation,while the magnitude change of NA-mean OHUr,which is primarily caused by AMOC change and redistributed heat flux,is not proportional to the imposed NA heat-flux perturbation.There is a nearly linear relationship between the magnitude of AMOC change and the OHUr in tropical regions,including the regions in the low-latitude South Atlantic,the tropical Pacific Ocean and the Indian Ocean.展开更多
A downscaling method taking into account of precipitation regionalization is developed and used in the regional summer precipitation prediction (RSPP) in China. The downscaling is realized by utilizing the optimal s...A downscaling method taking into account of precipitation regionalization is developed and used in the regional summer precipitation prediction (RSPP) in China. The downscaling is realized by utilizing the optimal subset regression based on the hindcast data of the Coupled Ocean-Atmosphere General Climate Model of National Climate Center (CGCM/NCC), the historical reanalysis data, and the observations. The data are detrended in order to remove the influence of the interannual variations on the selection of predictors for the RSPP. Optimal predictors are selected through calculation of anomaly correlation coefficients (ACCs) twice to ensure that the high-skill areas of the CGCM/NCC are also those of observations, with the ACC value reaching the 0.05 significant level. One-year out cross-validation and independent sample tests indicate that the downscaling method is applicable in the prediction of summer precipitation anomaly across most of China/vith high and stable accuracy, and is much better than the direct CGCM/NCC prediction. The predictors used in the downscaling method for the RSPP are independent and have strong physical meanings, thus leading to the improvements in the prediction of regional precipitation anomalies.展开更多
In this paper,experiment results about East Asia climate from five CGCMs are described.The ability of the models to simulate present climate and the simulated response to increased carbon dioxide are both covered.The ...In this paper,experiment results about East Asia climate from five CGCMs are described.The ability of the models to simulate present climate and the simulated response to increased carbon dioxide are both covered.The results indicate that all models show substantial changes in climate when carbon dioxide concentrations are doubled.In particular,the strong surface warming at high latitudes in winter and the significant increase of summer precipitation in the monsoon area are produced by all models.Regional evaluation results show that these five CGCMs are particularly good in simulating spatial distribution of present climate.The main characteristics of the seasonal mean H500,SAT, MSLP field can be simulated by most CGCMs.But there are significant systematic errors in SAT, MSLP,HS00 fields in most models.On the whole,DKRZ OPYC is the best in simulating the present climate in East Asia.展开更多
Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associa...Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associated with global warming are analyzed and compared in this study. It is found that during the last 20 years, the ISO has weakened in the central equatorial Pacific Ocean, but becomes more active in the central Indian Ocean and the Bay of Bengal; under the background of the global warming, increase in the amplitude of ISO intensity suggests that the ISO has become more active than before, with an obvious seasonal cycle, i.e., strong during winter and spring, but weak during summer and autumn; the energy of the upper tropospheric zonal winds has more concentrated in wave numbers 1-3, and the frequency of ISO tended to increase. Comparison between the results of control experiment and CO2 increase (1% per year) experiment of FGOALS-1.0g (developed at LASG) with the first and second 20-yr observations, is also performed, respectively. The comparative results show that the spatial structure of the ISO was well reproduced, but the strength of ISO was underestimated. On the basis of space-time spectral analysis, it is found that the simulated ISO contains too much high frequency waves, leading to the underestiniation of ISO intensity due to the dispersion of ISO energy. However, FGOALS-1.0g captured the salient features of ISO under the global warming background by two contrast experiments, such as the vitality and frequency-increasing of ISO in the central Indian Ocean and the Bay of Bengal.展开更多
基金the National Natural Science Foundation of China under Grant Nos.40221503,40231004, 40233031.
文摘This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.
基金supported by the Postdoctoral Fellow ship given by the Japan Society for the Promotion of Sciencesupported by the Kyousei and Kakushin Projects of the ministry of Education, Culture,Sports, Science, and Technology of Japan, the Core Research for Evolutional Science and Technology of the Japan Science and Technology Agencythe National Basic Research Program of China (Grant No. 2006CB403606)
文摘Satellite observations of SSTs have revealed the existence of unstable waves in the equatorial eastern Pacific and Atlantic oceans. These waves have a 20-40-day periodicity with westward phase speeds of 0.4-0.6 m s^-1 and wavelengths of 1000-2000 km during boreal summer and fall. They are generally called tropical instability waves (TIWs). This study investigates TIWs simulated by a high-resolution coupled atmosphere-ocean general circulation model (AOGCM). The horizontal resolution of the model is 120 km in the atmosphere, and 30 km longitude by 20 km latitude in the ocean. Model simulations show good agreement with the observed main features associated with TIWs. The results of energetics analysis reveal that barotropic energy conversion is responsible for providing the main energy source for TIWs by extracting energy from the meridional shear of the climatological-mean equatorial currents in the mixed layer. This deeper and northward-extended wave activity appears to gain its energy through baroclinic conversion via buoyancy work, which further contributes to the asymmetric distribution of TIWs. It is estimated that the strong cooling effect induced by equatorial upwelling is partially (-30%-40%) offset by the equatorward heat flux due to TIWs in the eastern tropical Pacific during the seasons when TIWs are active. The atmospheric mixed layer just above the sea surface responds to the waves with enhanced or reduced vertical mixing. Furthermore, the changes in turbulent mixing feed back to sea surface evaporation, favoring the westward propagation of TIWs. The atmosphere to the south of the Equator also responds to TIWs in a similar way, although TIWs are much weaker south of the Equator.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19020202)Key Research Program of Frontier Sciences,the Chinese Academy of Sciences(Grant No.ZDBS-LYDQC010)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42000000)the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(Grant No.QNHX2017)supported by the National Natural Science Foundation of China(Grant No.41706028)。
文摘State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertainty.Much of the inter-model spread is driven by responses to surface heat perturbations.This study mainly focuses on the response of the ocean to a surface heat flux perturbation F,as prescribed by the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP).The results of ocean model were compared with those of a CGCM with the same ocean component.On the global scale,the changes in global mean temperature,ocean heat content(OHC),and steric sea level(SSL)simulated in the OGCM are generally consistent with CGCM simulations.Differences in changes in ocean temperature,OHC,and SSL between the two models primarily occur in the Arctic and Atlantic Oceans(AA)and the Southern Ocean(SO)basins.In addition to the differences in surface heat flux anomalies between the two models,differences in heat exchange between basins also play an important role in the inconsistencies in ocean climate changes in the AA and SO basins.These discrepancies are largely due to both the larger initial value and the greater weakening change of the Atlantic meridional overturning circulation(AMOC)in CGCM.The greater weakening of the AMOC in the CGCM is associated with the atmosphere–ocean feedback and the lack of a restoring salinity boundary condition.Furthermore,differences in surface salinity boundary conditions between the two models contribute to discrepancies in SSL changes.
基金This paper is financially supported by the NKBRSF(National Key Basic Research Special Funds)project ofChina(G1999043400).the Key Project of Knowledge Innovation Engineering of Chinese Academy of Sciences(ZKCX2-SW-210),and the Lead Project of Innovation
文摘An atmosphere-vegetation interaction model (AVIM) has been coupled with a nine-layer General Cir culation Model (GCM) of Institute of Atmospheic Physics / State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/ LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. AVIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/ LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon gitude 7.5?and latitude 4.5? the vegetation is given a high resolution of 1.5?by 1.5?to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis.Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.
基金Supported by the National Key Research and Development Program of China(2016YFB0200801,2017YFA0604300,and 2018YFC1507003)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100300)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2017Y004)
文摘The ECHAM5 model is coupled with the widely used Common Land Model(CoLM). ECHAM5 is a state-of-theart atmospheric general circulation model incorporated into the integrated weather and climate model of the Chinese Academy of Meteorological Sciences(CAMS-CSM). Land surface schemes in ECHAM5 are simple and do not provide an adequate representation of the vegetation canopy and snow/frozen soil processes. Two AMIP(Atmospheric Model Intercomparison Project)-type experiments using ECHAM5 and ECHAM5-CoLM are run over 30 yr and the results are compared with reanalysis and observational data. It is found that the pattern of land surface temperature simulated by ECHAM5-CoLM is significantly improved relative to ECHAM5. Specifically, the cold bias over Eurasia is removed and the root-mean-square error is reduced in most regions. The seasonal variation in the zonal mean land surface temperature and the in situ soil temperature at 20-and 80-cm depths are both better simulated by ECHAM5-CoLM. ECHAM5-CoLM produces a more reasonable spatial pattern in the soil moisture content, whereas ECHAM5 predicts much drier soils. The seasonal cycle of soil moisture content from ECHAM5-CoLM is a better match to the observational data in six specific regions. ECHAM5-CoLM reproduces the observed spatial patterns of both sensible and latent heat fluxes. The strong positive bias in precipitation over land is reduced in ECHAM5-CoLM, especially over the southern Tibetan Plateau and middle–lower reaches of the Yangtze River during the summer monsoon rainy season.
文摘Experimental predictions with a hybrid coupled ocean-atmosphere model(L9R15 AGCM-ZC ocean model)were performed for the 1986/87 El Nino event and the 1988/89 La Nina event with and without the Tibetan Plateau respectively(called TP FORC and NTP FORC hereinafter). Comparison shows that,to some extent,the existence of the Tibetan Plateau orography weakens or restrains(strengthens or facilitates)the formation of the anomalous circulation of Asian monsoon during El Nino(La Nina)period.Opposite results are found in the uncoupled AGCM simulation.
文摘Seasonal changes exhibit climate changes, so models can predict future climate change accurately only if they can reproduce seasonal cycle accu-rately. Further, seasonal changes are much larger than the changes even in long period of centuries. Thus it is unwise to ignore large ones compared to small climate change. In this paper, we determine how accurately a suite of ten coupled general circulation models reproduce the observed seasonal cycle in rainfall of the tropics. The seasonal cycles in rainfall of global tropics are known as monsoons. We found that the models can reasonably reproduce the seasonal cycle in rainfall, thus are useful in climate prediction and simulation of global monsoons.
基金Supported by the National Natural Science Foundation of China(41125017 and 41330423)LASG/IAP Funding for the Development of Climate System Model
文摘The development of coupled earth/climate system models in China over the past 20 years is reviewed, including a comparison with other international models that participated in the Coupled Model Intercom- parison Project (CMIP) from phase 1 (CMIP1) to phase 4 (CMIP4). The Chinese contribution to CMIP is summarized, and the major achievements from CMIP1 to CMIP3 are listed as a reference for assessing the strengths and weaknesses of Chinese models. After a description of CMIP5 experiments, the five Chinese models that participated in CMIP5 are then introduced. Furthermore, following a review of the current status of international model development, both the challenges and opportunities for the Chinese climate modeling community are discussed. The development of high-resolution climate models, earth system mod- els, and improvements in atmospheric and oceanic general circulation models, which are core components of earth/climate system models, are highlighted. To guarantee the sustainable development of climate system models in China, the need for national-level coordination is discussed, along with a list of the main compo- nents and supporting elements identified by the US National Strategy for Advancing Climate Modeling.
基金supported by the Chinese Academy of Sciences Strategic Priority Research Program(Grant No.XDA05110305)the National Program on Key Basic Research Project(2010CB951904)+2 种基金the National Natural Science Foundation of China(Grant Nos.41005040,41023002 and 40890054)the National High-Tech Research and Development Plan of China(2010AA012302)the China Meteorological Administration(Grant No.GYHY201006019)
文摘The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For E1 Nino developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipita- tion anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during E1 Nifio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simu- late the asymmetry of the wintertime circulation anomalies over the WNP between E1 Nifio and La Nifia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nifia is generally symmetric about the WNPAC associated with E1 Nifio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nifia events decay much faster than observed. In the observation, the WNPAC maintains throughout the E1 Nifio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basin- wide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.
基金Supported by the National Natural Science Foundation of China(41606011 and 91637210)National Key Research and Development Program(2016YFE0102400,2016YFA0600602,and 2018YFC1506002)+3 种基金Basic Scientific Research and Operation Funds of the Chinese Academy of Meteorological Sciences(2017Y007)Startup Funds for Introduced Talents of Nanjing University of Information Science&TechnologyOpen Project Funds of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsOpen Project Funds of the State Key Laboratory of Loess and Quartary Geology
文摘We present an overview of the El Ni?o–Southern Oscillation(ENSO) stability simulation using the Chinese Academy of Meteorological Sciences climate system model(CAMS-CSM). The ENSO stability was quantified based on the Bjerknes(BJ) stability index. Generally speaking, CAMS-CSM has the capacity of reasonably representing the BJ index and ENSO-related air–sea feedback processes. The major simulation biases exist in the underestimated thermodynamic damping and thermocline feedbacks. Further diagnostic analysis reveals that the underestimated thermodynamic feedback is due to the underestimation of the shortwave radiation feedback, which arises from the cold bias in mean sea surface temperature(SST) over central–eastern equatorial Pacific(CEEP). The underestimated thermocline feedback is attributed to the weakened mean upwelling and weakened wind–SST feedback(μ_a) in the model simulation compared to observation. We found that the weakened μ_a is also due to the cold mean SST over the CEEP.The study highlights the essential role of reasonably representing the climatological mean state in ENSO simulations.
基金supported by the National Key Research and Development Program of China(2022YFC3104802)the National Natural Science Foundation of China(42005123)+1 种基金and the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB42000000)sponsored by the National Key Scientific and Technological Infrastructure project‘Earth System Science Numerical Simulator Facility’(EarthLab).
文摘The diversity of surface-flux perturbations,especially for heat-flux perturbations,notably leads to uncertainties surrounding the responses of ocean climate under global warming scenarios projected by climate/Earth system models.However,when imposing heat-flux perturbations on the models,strong feedback persists between the atmosphere and the ocean,resulting in nearly doubled heat-flux perturbation over the North Atlantic(NA).Herein,quantitative evaluation of the influences of magnitude change of heat-flux perturbations over the NA on the changes in the Atlantic Meridional Overturning Circulation(AMOC),ocean heat uptake(OHU)and dynamic sea level(DSL)has been conducted by analysis of eight coupled model responses to the heat-flux perturbation experiments in the Flux-Anomaly-Forced Model Inter-comparison Project.It has been demonstrated that the magnitude of the AMOC change is extremely sensitive to the magnitude change of imposed NA heat-flux perturbation,and the weakening amplitude of the AMOC is nearly halved as the imposed heat-flux perturbation F is halved over the NA.The most remarkable responses of both DSL and OHU to the magnitude changes of NA heat-flux perturbation have been primarily found in the Atlantic and Arctic basins,especially for the NA region.Both the added ocean heat uptake(OHUa)and redistributed ocean heat uptake(OHUr)play key roles in OHU changes among the various NA heat-flux perturbation experiments.The magnitude change of NA-mean OHUa is almost linearly related to the imposed NA heat-flux perturbation,while the magnitude change of NA-mean OHUr,which is primarily caused by AMOC change and redistributed heat flux,is not proportional to the imposed NA heat-flux perturbation.There is a nearly linear relationship between the magnitude of AMOC change and the OHUr in tropical regions,including the regions in the low-latitude South Atlantic,the tropical Pacific Ocean and the Indian Ocean.
基金Supported by the National Science and Technology Support Program of China(2007BAC29B04 and 2009BAC51B05)Special Public Welfare Research Fund for Meteorological Profession of China Meteorological Adminstration(GYHY200906015)
文摘A downscaling method taking into account of precipitation regionalization is developed and used in the regional summer precipitation prediction (RSPP) in China. The downscaling is realized by utilizing the optimal subset regression based on the hindcast data of the Coupled Ocean-Atmosphere General Climate Model of National Climate Center (CGCM/NCC), the historical reanalysis data, and the observations. The data are detrended in order to remove the influence of the interannual variations on the selection of predictors for the RSPP. Optimal predictors are selected through calculation of anomaly correlation coefficients (ACCs) twice to ensure that the high-skill areas of the CGCM/NCC are also those of observations, with the ACC value reaching the 0.05 significant level. One-year out cross-validation and independent sample tests indicate that the downscaling method is applicable in the prediction of summer precipitation anomaly across most of China/vith high and stable accuracy, and is much better than the direct CGCM/NCC prediction. The predictors used in the downscaling method for the RSPP are independent and have strong physical meanings, thus leading to the improvements in the prediction of regional precipitation anomalies.
基金The work was supported by the National ScienceTechnical Committee in China (85-913-02-05)+1 种基金Climate Prediction Program the National Postdocter Fund.
文摘In this paper,experiment results about East Asia climate from five CGCMs are described.The ability of the models to simulate present climate and the simulated response to increased carbon dioxide are both covered.The results indicate that all models show substantial changes in climate when carbon dioxide concentrations are doubled.In particular,the strong surface warming at high latitudes in winter and the significant increase of summer precipitation in the monsoon area are produced by all models.Regional evaluation results show that these five CGCMs are particularly good in simulating spatial distribution of present climate.The main characteristics of the seasonal mean H500,SAT, MSLP field can be simulated by most CGCMs.But there are significant systematic errors in SAT, MSLP,HS00 fields in most models.On the whole,DKRZ OPYC is the best in simulating the present climate in East Asia.
基金Supported by the National Natural Science Foundation of China under Grant Nos.90211011 and 40231004the Science and Technology Department"Eleventh Five"programme under Grant No.2001BA611B01.
文摘Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associated with global warming are analyzed and compared in this study. It is found that during the last 20 years, the ISO has weakened in the central equatorial Pacific Ocean, but becomes more active in the central Indian Ocean and the Bay of Bengal; under the background of the global warming, increase in the amplitude of ISO intensity suggests that the ISO has become more active than before, with an obvious seasonal cycle, i.e., strong during winter and spring, but weak during summer and autumn; the energy of the upper tropospheric zonal winds has more concentrated in wave numbers 1-3, and the frequency of ISO tended to increase. Comparison between the results of control experiment and CO2 increase (1% per year) experiment of FGOALS-1.0g (developed at LASG) with the first and second 20-yr observations, is also performed, respectively. The comparative results show that the spatial structure of the ISO was well reproduced, but the strength of ISO was underestimated. On the basis of space-time spectral analysis, it is found that the simulated ISO contains too much high frequency waves, leading to the underestiniation of ISO intensity due to the dispersion of ISO energy. However, FGOALS-1.0g captured the salient features of ISO under the global warming background by two contrast experiments, such as the vitality and frequency-increasing of ISO in the central Indian Ocean and the Bay of Bengal.