Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring.The main focus is on managing the dynamic propertie...Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring.The main focus is on managing the dynamic properties like vibration,noise,and harshness that occur during the operational mode.Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system.Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the model.Sub structuring has the ability to combine numerical results along with the experimental results.Combination of substructuring and tactile response is applied in this study.Mode shapes of the system are analyzed and results obtained are correlated within this study to provide better optimization of the results.Wind turbine excited with wind energy depends on wind speed.Torsional vibration has a significant role in determining dynamic properties.Torsional vibration is caused as a result of the rotation of the turbine blade and depends on wind speed.The study gives importance to investigating the ability to simulate the numerical method and tactile response to predict and improve dynamic properties.展开更多
The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of free...The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.展开更多
A dynamics formula was established for the flexible cage of high-speed angular contact ball bearing. A modified Craig-Bampton component mode synthetic method was used to establish the formula with regard to the flexib...A dynamics formula was established for the flexible cage of high-speed angular contact ball bearing. A modified Craig-Bampton component mode synthetic method was used to establish the formula with regard to the flexibility of cage and based on a dynamic analysis of angular contact ball bearing,and a rigid-flexible multi-body dynamic analysis program was developed using ADAMS,which is verified by a computation example of Gupta. The results show that it's not likely to keep the rotation smoothness of cage when the ratio of pocket clearance to guiding clearance and the ratio of radial load to axial load become too large or too small. By comparison,the flexible cage runs more smoothly than the rigid cage.展开更多
A novel infinite element method(IEM)is presented for solving plate vibration problems in this paper.In the proposed IEM,the substructure domain is partitioned into multiple layers of geometrically similar finite eleme...A novel infinite element method(IEM)is presented for solving plate vibration problems in this paper.In the proposed IEM,the substructure domain is partitioned into multiple layers of geometrically similar finite elements which use only the data of the boundary nodes.A convergence criterion based on the trace of the mass matrix is used to determine the number of layers in the IE model partitioning process.Furthermore,in implementing the Craig-Bampton(CB)reduction method,the inversion of the global stiffness matrix is calculated using only the stiffness matrix of the first element layer.The validity and performance of the proposed method are investigated by means of four illustrative problems.The first example considers the case of a simple clamped rectangular plate.It is observed that the IEM results are consistent with the theoretical results for first six natural frequencies.The second example considers the frequency response of a clamped rectangular plate with a crack.The main feature of IEM is that a very fine and good quality virtual mesh can be created around the crack tip.The third and fourth examples consider the natural frequency of a multiple point supported plate and a perforated plate,respectively.The results are obtained just need to adjust the reference point or boundary nodes.The parametric analyses for various geometric profiles are easy to be conducted using these numerical techniques.In general,the results presented in this study have shown that the proposed method provides a direct,convenient and accurate tool for eigenvalue analysis of thin plate structure with complicated shapes.展开更多
文摘Vibrational characteristics in small horizontal axis wind turbine system are presented in this study with a system concept called tactile response and substructuring.The main focus is on managing the dynamic properties like vibration,noise,and harshness that occur during the operational mode.Tactile response is defined as the response of subsystem which is induced when a human body touches a vibrating system.Sub structuring is a computational method used to reduce the dynamic behavior of a large complex system with a smaller number of degrees of freedom without disturbing the mesh size of the model.Sub structuring has the ability to combine numerical results along with the experimental results.Combination of substructuring and tactile response is applied in this study.Mode shapes of the system are analyzed and results obtained are correlated within this study to provide better optimization of the results.Wind turbine excited with wind energy depends on wind speed.Torsional vibration has a significant role in determining dynamic properties.Torsional vibration is caused as a result of the rotation of the turbine blade and depends on wind speed.The study gives importance to investigating the ability to simulate the numerical method and tactile response to predict and improve dynamic properties.
基金Project(LZ2015022)supported by Educational Commission of Liaoning Province of ChinaProjects(51138001,51178081)supported by the National Natural Science Foundation of China+1 种基金Project(2013CB035905)supported by the Basic Research Program of ChinaProjects(DUT15LK34,DUT14QY10)supported by Fundamental Research Funds for the Central Universities,China
文摘The conventional linear quadratic regulator(LQR) control algorithm is one of the most popular active control algorithms.One important issue for LQR control algorithm is the reduction of structure's degrees of freedom(DOF). In this work, an LQR control algorithm with superelement model is intended to solve this issue leading to the fact that LQR control algorithm can be used in large finite element(FE) model for structure. In proposed model, the Craig-Bampton(C-B) method, which is one of the component mode syntheses(CMS), is used to establish superelement modeling to reduce structure's DOF and applied to LQR control algorithm to calculate Kalman gain matrix and obtain control forces. And then, the control forces are applied to original structure to simulate the responses of structure by vibration control. And some examples are given. The results show the computational efficiency of proposed model using synthesized models is higher than that of the classical method of LQR control when the DOF of structure is large. And the accuracy of proposed model is well. Meanwhile, the results show that the proposed control has more effects of vibration absorption on the ground structures than underground structures.
文摘A dynamics formula was established for the flexible cage of high-speed angular contact ball bearing. A modified Craig-Bampton component mode synthetic method was used to establish the formula with regard to the flexibility of cage and based on a dynamic analysis of angular contact ball bearing,and a rigid-flexible multi-body dynamic analysis program was developed using ADAMS,which is verified by a computation example of Gupta. The results show that it's not likely to keep the rotation smoothness of cage when the ratio of pocket clearance to guiding clearance and the ratio of radial load to axial load become too large or too small. By comparison,the flexible cage runs more smoothly than the rigid cage.
文摘A novel infinite element method(IEM)is presented for solving plate vibration problems in this paper.In the proposed IEM,the substructure domain is partitioned into multiple layers of geometrically similar finite elements which use only the data of the boundary nodes.A convergence criterion based on the trace of the mass matrix is used to determine the number of layers in the IE model partitioning process.Furthermore,in implementing the Craig-Bampton(CB)reduction method,the inversion of the global stiffness matrix is calculated using only the stiffness matrix of the first element layer.The validity and performance of the proposed method are investigated by means of four illustrative problems.The first example considers the case of a simple clamped rectangular plate.It is observed that the IEM results are consistent with the theoretical results for first six natural frequencies.The second example considers the frequency response of a clamped rectangular plate with a crack.The main feature of IEM is that a very fine and good quality virtual mesh can be created around the crack tip.The third and fourth examples consider the natural frequency of a multiple point supported plate and a perforated plate,respectively.The results are obtained just need to adjust the reference point or boundary nodes.The parametric analyses for various geometric profiles are easy to be conducted using these numerical techniques.In general,the results presented in this study have shown that the proposed method provides a direct,convenient and accurate tool for eigenvalue analysis of thin plate structure with complicated shapes.