期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm 被引量:1
1
作者 Danlei Chen Yiqing Luo Xigang Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期244-255,共12页
Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature... Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving. 展开更多
关键词 optimal design Process systems particle swarm optimization simulated annealing Mathematical modeling
下载PDF
Multi-objective Optimisation Design of Water Distribution Systems:Comparison of Two Evolutionary Algorithms 被引量:3
2
作者 Haixing Liu Jing Lu +1 位作者 Ming Zhao Yixing Yuan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第3期30-38,共9页
In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the wat... In order to compare two advanced multi-objective evolutionary algorithms,a multi-objective water distribution problem is formulated in this paper.The multi-objective optimization has received more attention in the water distribution system design.On the one hand the cost of water distribution system including capital,operational,and maintenance cost is mostly concerned issue by the utilities all the time;on the other hand improving the performance of water distribution systems is of equivalent importance,which is often conflicting with the previous goal.Many performance metrics of water networks are developed in recent years,including total or maximum pressure deficit,resilience,inequity,probabilistic robustness,and risk measure.In this paper,a new resilience metric based on the energy analysis of water distribution systems is proposed.Two optimization objectives are comprised of capital cost and the new resilience index.A heuristic algorithm,speedconstrained multi-objective particle swarm optimization( SMPSO) extended on the basis of the multi-objective particle swarm algorithm,is introduced to compare with another state-of-the-art heuristic algorithm,NSGA-II.The solutions are evaluated by two metrics,namely spread and hypervolume.To illustrate the capability of SMPSO to efficiently identify good designs,two benchmark problems( two-loop network and Hanoi network) are employed.From several aspects the results demonstrate that SMPSO is a competitive and potential tool to tackle with the optimization problem of complex systems. 展开更多
关键词 water DISTRIBUTION system design optimization multi-objective particle swarm optimization
下载PDF
Hybrid Multi-Object Optimization Method for Tapping Center Machines
3
作者 Ping-Yueh Chang Fu-I Chou +1 位作者 Po-Yuan Yang Shao-Hsien Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期23-38,共16页
This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the r... This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control(CNC)machines.First,rigid tapping parameters and uniform(including 41-level and 19-level)layouts were adopted to collect representative data for modeling.Next,ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data.In tapping center machines,the synchronization errors and cycle times are important consid-erations,so these two objects were used to build the ANFIS models.Then,a MOPSO algorithm was used to search for the optimal parameter combinations for the two ANFIS models simultaneously.The experimental results showed that the proposed method obtains suitable parameter values and optimal parameter combinations compared with the nonsystematic method.Additionally,the optimal parameter combination was used to optimize existing CNC tools during the commissioning process.Adjusting the proportional and integral gains of the spindle could improve resistance to deformation during rigid tapping.The posi-tion gain and prefeedback coefficient can reduce the synchronization errors significantly,and the acceleration and deceleration times of the spindle affect both the machining time and synchronization errors.The proposed method can quickly and accurately minimize synchronization errors from 107 to 19.5 pulses as well as the processing time from 3,600 to 3,248 ms;it can also shorten the machining time significantly and reduce simultaneous errors to improve tapping yield,there-by helping factories achieve carbon reduction. 展开更多
关键词 Tapping center machine uniform design adaptive network-based fuzzy inference system(ANFIS) multi-objective particle swarm optimizer
下载PDF
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
4
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
5
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
下载PDF
Analytic design of information granulation-based fuzzy radial basis function neural networks with the aid of multiobjective particle swarm optimization 被引量:2
6
作者 Byoung-Jun Park Jeoung-Nae Choi +1 位作者 Wook-Dong Kim Sung-Kwun Oh 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第1期4-35,共32页
Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Partic... Purpose–The purpose of this paper is to consider the concept of Fuzzy Radial Basis Function Neural Networks with Information Granulation(IG-FRBFNN)and their optimization realized by means of the Multiobjective Particle Swarm Optimization(MOPSO).Design/methodology/approach–In fuzzy modeling,complexity,interpretability(or simplicity)as well as accuracy of the obtained model are essential design criteria.Since the performance of the IG-RBFNN model is directly affected by some parameters,such as the fuzzification coefficient used in the FCM,the number of rules and the orders of the polynomials in the consequent parts of the rules,the authors carry out both structural as well as parametric optimization of the network.A multi-objective Particle Swarm Optimization using Crowding Distance(MOPSO-CD)as well as O/WLS learning-based optimization are exploited to carry out the structural and parametric optimization of the model,respectively,while the optimization is of multiobjective character as it is aimed at the simultaneous minimization of complexity and maximization of accuracy.Findings–The performance of the proposed model is illustrated with the aid of three examples.The proposed optimization method leads to an accurate and highly interpretable fuzzy model.Originality/value–A MOPSO-CD as well as O/WLS learning-based optimization are exploited,respectively,to carry out the structural and parametric optimization of the model.As a result,the proposed methodology is interesting for designing an accurate and highly interpretable fuzzy model. 展开更多
关键词 Modelling optimization techniques Neural nets design calculations Fuzzy c-means clustering multi-objective particle swarm optimization Information granulation-based fuzzy radial basis function neural network Ordinary least squaresmethod Weighted least square method
下载PDF
Multi-objective Optimization Design of Inset-surface Permanent Magnet Machine Considering Deterministic and Robust Performances 被引量:2
7
作者 Gaohong Xu Zexin Jia +2 位作者 Wenxiang Zhao Qian Chen Guohai Liu 《Chinese Journal of Electrical Engineering》 CSCD 2021年第3期73-87,共15页
The inset-surface permanent magnet(ISPM)machine can achieve the desired electromagnetic performance according to the traditional deterministic design.However,the reliability and quality of the machine may be affected ... The inset-surface permanent magnet(ISPM)machine can achieve the desired electromagnetic performance according to the traditional deterministic design.However,the reliability and quality of the machine may be affected by the essential manufacturing tolerances and unavoidable noise factors in mass production.To address this weakness,a comprehensive multi-objective optimization design method is proposed,in which robust optimization is performed after the deterministic design.The response surface method is first adopted to establish the optimization objective equation.Afterward,the sample points are obtained via Monte Carlo simulation considering the design-variable uncertainty.The Design for Six Sigma approach is adopted to ensure the robustness of the design model.Furthermore,the barebones multi-objective particle swarm optimization algorithm is used to obtain a compromise solution.A prototype is manufactured to evaluate the effectiveness of the proposed method.According to the finite-element analysis and experimental tests,the electromagnetic performance and reliability of the machine are significantly enhanced with the proposed method. 展开更多
关键词 multi-objective optimization design robust design design for Six Sigma Monte Carlo simulation barebones multi-objective particle swarm optimization
原文传递
Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms 被引量:6
8
作者 焦毅 徐刚 《Chinese Physics C》 SCIE CAS CSCD 2017年第2期166-176,共11页
In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear pe... In the lattice design of a diffraction-limited storage ring(DLSR) consisting of compact multi-bend achromats(MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization(MOPSO) and multi-objective genetic algorithm(MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima. 展开更多
关键词 diffraction-limited storage ring High Energy Photon Source multi-objective particle swarm optimization multi-objective genetic algorithm lattice design
原文传递
电主轴恒定多应力加速退化试验优化设计
9
作者 王云艺 郭劲言 +3 位作者 王朝 孔令通 杨兆军 阿喜塔 《制造技术与机床》 北大核心 2025年第3期187-193,共7页
为有效缩短电主轴加速退化试验周期,控制试验成本,并提高可靠性评估精度,提出了一种改进的多应力恒定加速退化试验优化设计方法。通过以试验费用为约束条件,采用A和D双优化准则建立优化模型,先运用粒子群算法构造试验方案备选集,后利用M... 为有效缩短电主轴加速退化试验周期,控制试验成本,并提高可靠性评估精度,提出了一种改进的多应力恒定加速退化试验优化设计方法。通过以试验费用为约束条件,采用A和D双优化准则建立优化模型,先运用粒子群算法构造试验方案备选集,后利用Monte Carlo仿真方法生成加速退化试验的仿真故障数据,最终经统计分析得到加速退化试验(accelerated degradation test,ADT)最优试验方案。通过得出某型号电主轴的优化设计结果与现有常见的优化方法类比分析试验,证明了本方法可有效降低试验时间,提升试验效率,降低试验成本,具备可靠性与有效性。 展开更多
关键词 电主轴 加速退化试验 优化设计 粒子群算法 Monte Carlo仿真
下载PDF
基于改进粒子群算法和RMxprt的永磁滚筒多目标优化设计
10
作者 冯立杰 付帅帅 张虎翼 《科学技术与工程》 北大核心 2025年第5期1936-1943,共8页
针对基于专家经验对永磁滚筒优化设计时,寻优效率比较低的问题,构建了一种基于改进粒子群优化算法和RMxprt联合仿真的永磁滚筒多目标优化设计方法。首先,提出了一种改进粒子群优化算法,提高了寻优收敛速度;其次,在永磁滚筒结构参数与性... 针对基于专家经验对永磁滚筒优化设计时,寻优效率比较低的问题,构建了一种基于改进粒子群优化算法和RMxprt联合仿真的永磁滚筒多目标优化设计方法。首先,提出了一种改进粒子群优化算法,提高了寻优收敛速度;其次,在永磁滚筒结构参数与性能参数关系分析的基础上明确了面向改进粒子群优化算法的变量参数、约束参数和优化参数;最后,通过MATLAB编写改进粒子群优化算法程序,利用改进粒子群优化算法程序实现RMxprt输入参数与输出参数的闭环迭代与比较寻优,提高了永磁滚筒优化设计的效率和优化效果。 展开更多
关键词 永磁滚筒 改进粒子群优化算法 多目标优化设计 联合仿真
下载PDF
基于I-PSO算法和Simulink的湿式离合器优化设计 被引量:3
11
作者 钱煜 程准 +1 位作者 陈兵兵 鲁植雄 《计算机应用研究》 CSCD 北大核心 2019年第12期3781-3784,共4页
为提高湿式离合器的轻便性和可靠性,提出了一种I-PSO算法与MATLAB/Simulink相结合的湿式离合器优化设计新方法。对湿式离合器进行动力学分析,并基于MATLAB/Simulink搭建湿式离合器动力传递的仿真模型。引入模拟退火算法中对粒子进行扰... 为提高湿式离合器的轻便性和可靠性,提出了一种I-PSO算法与MATLAB/Simulink相结合的湿式离合器优化设计新方法。对湿式离合器进行动力学分析,并基于MATLAB/Simulink搭建湿式离合器动力传递的仿真模型。引入模拟退火算法中对粒子进行扰动的思想对改进的粒子群算法再度进行改进,并基于某测试函数验证了算法改进的效果,选择离合器的滑磨功与体积为优化目标。最终联合改进粒子群算法与MATLAB/Simulink中建立的湿式离合器仿真模型对某具体型号湿式离合器进行多目标优化设计。结果表明,改进后的粒子群算法在寻优的速率和精度上有一定效果;优化后的湿式离合器与原设计相比,总目标函数缩小约40. 12%,滑磨功减小了约61. 8%,优化效果明显。 展开更多
关键词 模拟退火算法 改进粒子群算法 MATLAB/simulINK 湿式离合器 优化设计
下载PDF
基于粒子群算法的瞬变电磁检测小车结构优化 被引量:2
12
作者 卫伟 赵弘 《石油机械》 北大核心 2024年第3期117-125,共9页
利用瞬变电磁法进行管道移动检测的过程中,经常由于检测设备抖动造成检测信号的误差或检测失败。为此,设计了一款可搭载瞬变电磁检测设备的自动检测小车。基于检测小车和埋地管道检测的工作要求,进行可变线圈搭载平台和减震机构设计,并... 利用瞬变电磁法进行管道移动检测的过程中,经常由于检测设备抖动造成检测信号的误差或检测失败。为此,设计了一款可搭载瞬变电磁检测设备的自动检测小车。基于检测小车和埋地管道检测的工作要求,进行可变线圈搭载平台和减震机构设计,并利用解析法对弹簧阻尼器的刚度系数和阻尼系数进行优化。基于ANSYS Workbench软件对上摆臂和车轮连接件进行拓扑优化。基于减震机构的关键零件下摆臂对整体性能的影响,利用CCD中心组合试验法,进行仿真试验设计取得数据,并利用响应面法得出最大应力和质量与下摆臂设计参数的映射关系。采用粒子群算法对映射关系进行优化设计,获得最大应力和质量最小时的下摆臂参数。优化结果表明:采用Adams对优化后的检测小车进行运动学仿真,小车平台质心在竖直方向上位移和速度的峰值分别降低约55.7%和26.5%,均值分别降低约67.9%和24.2%,波动的次数也明显减少,检测小车性能显著增强。所得结论可为检测小车设计提供理论参考,对管道缺陷检测领域具有一定的工程意义。 展开更多
关键词 埋地管道 瞬变电磁检测 检测小车 粒子群算法 优化设计 仿真分析
下载PDF
基于序列响应面法的汽车结构耐撞性多目标粒子群优化设计 被引量:57
13
作者 孙光永 李光耀 +1 位作者 钟志华 张勇 《机械工程学报》 EI CAS CSCD 北大核心 2009年第2期224-230,共7页
汽车结构的耐撞性及碰撞吸能优化是一个涉及到多变量、多约束和多目标的优化过程。为克服常规响应面法在整个设计空间进行逼近导致精度低和传统的单目标优化设计只能针对其中的一个目标进行优化的缺陷。提出采用逐次逼近方法,通过移动... 汽车结构的耐撞性及碰撞吸能优化是一个涉及到多变量、多约束和多目标的优化过程。为克服常规响应面法在整个设计空间进行逼近导致精度低和传统的单目标优化设计只能针对其中的一个目标进行优化的缺陷。提出采用逐次逼近方法,通过移动、缩放等方式在设计空间中不断更新兴趣域,在不同的兴趣域中将试验设计、能代表实际碰撞过程精度较高的近似模型和多目标粒子群优化算法相结合,获得一组最小化各目标函数的非劣解。利用最小距离选解法快速有效地从非劣解集中挑选出一组耐撞性效果最好的解并以此解作为下一迭代步兴趣域的中心,直到收敛至最优解,最终优化解的各个目标函数值均得到提高。数字算例表明,该方法具有较高的精度和较强的工程实用性。 展开更多
关键词 碰撞模型 优化设计 多目标 粒子群
下载PDF
轿车侧碰中车门抗撞性的快速优化 被引量:8
14
作者 徐涛 郝亮 +3 位作者 徐天爽 左文杰 郭桂凯 程鹏 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第3期677-682,共6页
针对汽车侧面碰撞时吸收能量的重要部件——车门结构,进行了快速抗撞性优化设计。将提高车门结构吸能量作为优化目标,选择主要部件的板厚为设计变量,建立抗撞性优化问题的数学模型。基于均匀试验设计方法快速合理地分布样本点。根据多... 针对汽车侧面碰撞时吸收能量的重要部件——车门结构,进行了快速抗撞性优化设计。将提高车门结构吸能量作为优化目标,选择主要部件的板厚为设计变量,建立抗撞性优化问题的数学模型。基于均匀试验设计方法快速合理地分布样本点。根据多项式响应面方法构造原优化问题的高精度近似模型。采用粒子群优化算法对近似模型进行优化设计。优化结果证明了本文提出的快速抗撞性优化设计方案的可行性及有效性,对车辆被动安全分析具有较高的工程应用价值。 展开更多
关键词 机械设计 抗撞性 优化设计 响应面法 均匀试验设计 粒子群优化算法
下载PDF
基于混合多目标粒子群算法的飞行器气动布局设计 被引量:8
15
作者 王允良 李为吉 《航空学报》 EI CAS CSCD 北大核心 2008年第5期1202-1206,共5页
为了提高多目标优化算法求解非劣解集的效率,在多目标粒子群算法的基本框架中引入了Pareto过滤算子、小生境技术和模拟退火算法,建立了全新的混合多目标粒子群算法。该算法具有运算收敛快,所得非劣解集分布均匀、广泛的特点。将其应用... 为了提高多目标优化算法求解非劣解集的效率,在多目标粒子群算法的基本框架中引入了Pareto过滤算子、小生境技术和模拟退火算法,建立了全新的混合多目标粒子群算法。该算法具有运算收敛快,所得非劣解集分布均匀、广泛的特点。将其应用于求解以升阻比和效用体积最大化为目标的再入式高超声速飞行器气动布局多目标优化设计模型,将计算结果与原始多目标粒子群算法的计算结果进行对比,体现出本文提出的混合多目标粒子群算法能够更加有效地求解复杂多目标优化设计问题的非劣解集,从而为多目标决策提供有力的支持。 展开更多
关键词 粒子群优化算法 小生境技术 模拟退火算法 多目标优化 气动布局设计
下载PDF
基于PSO的软杀伤对抗条件下反舰导弹捕捉概率优化研究 被引量:2
16
作者 王斯福 强文义 +1 位作者 刘永才 关世义 《兵工学报》 EI CAS CSCD 北大核心 2008年第6期703-708,共6页
针对目标实施的冲淡干扰给反舰导弹末制导带来的影响,建立了冲淡干扰条件下,导引头对目标捕捉过程的数学模型,其中,考虑了由于目标探测误差引起的导弹装定速度方向的误差及其在冲淡干扰条件下对捕捉概率的影响。利用蒙特卡洛法,对捕捉... 针对目标实施的冲淡干扰给反舰导弹末制导带来的影响,建立了冲淡干扰条件下,导引头对目标捕捉过程的数学模型,其中,考虑了由于目标探测误差引起的导弹装定速度方向的误差及其在冲淡干扰条件下对捕捉概率的影响。利用蒙特卡洛法,对捕捉概率进行了统计试验,通过均匀试验设计和BP神经网络得到了对抗条件下捕捉概率的预报模型;最后在对抗条件下,利用粒子群优化算法(PSO)对捕捉概率进行优化,并对影响捕捉概率的多个参数进行了协调配置。 展开更多
关键词 自动控制技术 捕捉概率 蒙特卡洛仿真 软杀伤 冲淡干扰 均匀设计 粒子群优化算法
下载PDF
基于自适应模拟退火PSO算法建筑管道布置研究 被引量:2
17
作者 王长涛 孙晓彤 +1 位作者 韩忠华 朱毅 《系统仿真学报》 CAS CSCD 北大核心 2018年第5期1941-1949,共9页
为解决建筑空间下的管道自动布置问题,建立了建筑环境和管道数学模型,将管道长度、弯头数、敷设区域作为评价指标。采用自适应模拟退火粒子群算法对管道进行优化,该算法引入随适应值大小自适应调整进化参数及结合模拟退火算法调整粒子... 为解决建筑空间下的管道自动布置问题,建立了建筑环境和管道数学模型,将管道长度、弯头数、敷设区域作为评价指标。采用自适应模拟退火粒子群算法对管道进行优化,该算法引入随适应值大小自适应调整进化参数及结合模拟退火算法调整粒子最优位置的策略,以增强算法跳出局部极值的能力。设计了一种基于选择概率代价的初始种群建立方法,提高初始解的质量。通过仿真实验,将该算法与标准粒子群算法进行比较,结果表明自适应模拟退火粒子群算法在解的质量上有显著的提高。 展开更多
关键词 建筑管道自动布置 自适应模拟退火粒子群算法 模拟退火 选择概率
原文传递
基于改进粒子群算法优化的凸轮驱动电液制动器控制研究 被引量:3
18
作者 魏荣 刘茹敏 +1 位作者 张洪强 张鹏程 《机床与液压》 北大核心 2021年第13期80-84,共5页
为解决车辆制动反应时间较长的问题,设计一种凸轮驱动电液制动器控制系统,并对制动响应时间进行仿真验证。介绍凸轮电液制动系统的总体结构,建立系统的动力学模型。定义凸轮机构的设计变量和约束条件,构造其优化目标函数。引用粒子群算... 为解决车辆制动反应时间较长的问题,设计一种凸轮驱动电液制动器控制系统,并对制动响应时间进行仿真验证。介绍凸轮电液制动系统的总体结构,建立系统的动力学模型。定义凸轮机构的设计变量和约束条件,构造其优化目标函数。引用粒子群算法并进行改进,利用改进粒子群算法对目标函数进行优化,并给出凸轮机构优化流程图。在不同制动压力下,利用MATLAB软件对优化后的凸轮驱动电液制动器的制动反应时间进行仿真,并且与优化前进行对比。结果显示:随着制动压力的增大,优化前凸轮驱动电液制动器的制动反应时间较长,优化后反应时间较短。采用所设计的凸轮驱动电液制动器控制系统,能够缩短车辆制动时间,有利于安全驾驶。 展开更多
关键词 改进粒子群算法 凸轮 电液制动器 优化 仿真
下载PDF
基于膜概念和Kriging模型混合优化算法的翼型设计 被引量:2
19
作者 李丁 夏露 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第1期80-87,共8页
在气动优化设计中,发展一些计算代价小同时又具有较好的全局/局部搜索平衡能力的优化算法十分重要。针对此,文章提出了一种基于膜概念和Kriging模型的混合优化算法。该算法对细胞膜的结构和新陈代谢运作机制进行了仿真,将粒子群优化算... 在气动优化设计中,发展一些计算代价小同时又具有较好的全局/局部搜索平衡能力的优化算法十分重要。针对此,文章提出了一种基于膜概念和Kriging模型的混合优化算法。该算法对细胞膜的结构和新陈代谢运作机制进行了仿真,将粒子群优化算法与差分进化算法有机地结合了起来,增强了算法的寻优能力,同时,引入Kriging模型进行预估寻优,极大地减少了计算开销。函数测试结果表明,该混合算法具有很好的寻优能力。将该算法应用到单段翼翼型和两段翼翼型的设计之中,取得了良好的结果。 展开更多
关键词 气动 翼型 算法 设计 流程图 效率 迭代方法 机制 数值方法 优化 KRIGING模型
下载PDF
基于Kriging模型和模拟退火粒子群算法的结构有限元模型修正 被引量:10
20
作者 康俊涛 柯志涵 胡佳 《武汉理工大学学报(交通科学与工程版)》 2019年第4期657-661,共5页
提出一种基于Kriging模型和模拟退火粒子群算法的结构模型修正方法.利用拉丁超立方对结构设计参数(不同杆件的密度)进行抽样,并代入有限元模型得到响应特征参数(频率),通过构建Kriging函数来拟合设计参数和特征参数之间关系.基于建立的K... 提出一种基于Kriging模型和模拟退火粒子群算法的结构模型修正方法.利用拉丁超立方对结构设计参数(不同杆件的密度)进行抽样,并代入有限元模型得到响应特征参数(频率),通过构建Kriging函数来拟合设计参数和特征参数之间关系.基于建立的Kriging函数模型,利用模拟退火粒子群算法优化设计参数,修正初始有限元模型.利用一空间桁架结构数值算例对所提方法进行了验证.结果表明,基于Kriging函数和模拟退火粒子群算法的结构有限元模型修正避免了反复调用有限元进行大量迭代运算,较快的收敛到全局最优解,提高了模型修正计算效率. 展开更多
关键词 KRIGING模型 模型修正 拉丁超立方 模拟退火粒子群算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部