期刊文献+
共找到1,487篇文章
< 1 2 75 >
每页显示 20 50 100
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system
1
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
2
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes Soil N Soil Organic C Green Manure Deer Browse Forage cropping Systems
下载PDF
Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system
3
作者 ZHANG Chong WANG Dan-dan +6 位作者 ZHAO Yong-jian XIAO Yu-lin CHEN Huan-xuan LIU He-pu FENG Li-yuan YU Chang-hao JU Xiao-tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1883-1895,共13页
Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Here... Ammonia (NH_3) emissions should be mitigated to improve environmental quality.Croplands are one of the largest NH_3sources,they must be managed properly to reduce their emissions while achieving the target yields.Herein,we report the NH_3 emissions,crop yield and changes in soil fertility in a long-term trial with various fertilization regimes,to explore whether NH_3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs),and its interaction with the organic amendments (i.e.,manure and straw) in a wheat–maize rotation.Implementing the 4Rs significantly reduced NH_3 emissions to 6 kg N ha~(–1) yr~(–1) and the emission factor to 1.72%,without compromising grain yield (12.37 Mg ha~(–1) yr~(–1))and soil fertility (soil organic carbon of 7.58 g kg~(–1)) compared to the conventional chemical N management.When using the 4R plus manure,NH_3 emissions (7 kg N ha~(–1) yr~(–1)) and the emission factor (1.74%) were as low as 4Rs,and grain yield and soil organic carbon increased to 14.79 Mg ha~(–1) yr~(–1) and 10.09 g kg~(–1),respectively.Partial manure substitution not only significantly reduced NH_3 emissions but also increased crop yields and improved soil fertility,compared to conventional chemical N management.Straw return exerted a minor effect on NH_3 emissions.These results highlight that 4R plus manure,which couples nitrogen and carbon management can help achieve both high yields and low environmental costs. 展开更多
关键词 ammonia emission crop yield 4R nutrient stewardship partial manure substitution winter wheat–summer maize cropping system
下载PDF
Maize-soybean relay cropping increases soybean yield synergistically by extending the post-anthesis leaf stay-green period and accelerating grain filling
4
作者 Yiling Li Ping Chen +7 位作者 Zhidan Fu Kai Luo Ping Lin Chao Gao Shanshan Liu Tian Pu Taiwen Yong Wenyu Yang 《The Crop Journal》 SCIE CSCD 2023年第6期1921-1930,共10页
Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest.However,it is difficult to increase yield synergistically because of the reduced photosynthetic abilities... Relay cropping of Poaceae and Fabaceae promotes high yield and land-use efficiency by allowing a double harvest.However,it is difficult to increase yield synergistically because of the reduced photosynthetic abilities of legume leaves under the shade of graminoids.Leaf photosynthetic capacity in relay cropping systems is associated with ecological niche differentiation and photosynthetic compensation after restoration of normal light.We conducted a field experiment in southwest China in 2020–2021 to evaluate the effects of three cropping patterns:maize–soybean relay cropping(IMS),monoculture maize(MM),and monoculture soybean(SS),and N application levels:no N application(NN:0 kg N ha^(−1)),reduced N(RN:180 kg N ha^(−1)),and conventional N(CN:240 kg N ha^(−1)).Compared to monocropping,relay cropping increased the stay-green traits of maize and soybean by 13%and 89%,respectively.Relay cropping prolonged the leaf stay-green duration in the maize and soybean lag phase by almost 4 and 8 days,respectively.Relay cropping maize(IM)increased the leaf area index(LAI)by 79.4%to 88.5%under NN and 55.5%to 148%under RN.Relay cropping soybean(IS)increased the LAI from 115%to 437%at days 40 to 50 after anthesis.IM increased yield by 65.6%.IS increased yield by 9.7%.HI and system yield were at their highest values under RN.In the relay cropping system,reduced N application extended green leaf duration,increased photosynthesis inside the canopy at multiple levels,ultimately increases soybean yield synergistically. 展开更多
关键词 Leaf stay-green Nitrogen reduction Maize-soybean relay cropping Yield
下载PDF
Estimating Carbon Capture Potential of Fallow Weeds in Rice Cropping Systems
5
作者 Ge Chen Yuling Kang +2 位作者 Fangbo Cao Jiana Chen Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期71-77,共7页
Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sa... Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sativa L.)cropping systems.A six-region,two-year on-farm investigation and a three-year tillage experiment were conducted to estimate C capture in fallow weeds in rice cropping systems.The on-farm investigation showed that the average mean C capture by fallow weeds across six regions and two years reached 112 g m^(-2).The tillage experiment indicated that no-tillage practices increased C capture by fallow weeds by 80%on average as compared with conventional tillage.The results of this study not only contribute to an understanding of C capture potential of fallow weeds in rice cropping systems,but also provide a reference for including fallow weeds in the estimation of vegetative C sink. 展开更多
关键词 Carbon cycling fallow weeds NO-TILLAGE rice cropping system vegetative carbon sink
下载PDF
Effects of Allelochemicals on Root Growth and Pod Yield in Response to Continuous Cropping Obstacle of Peanut
6
作者 Zhaohui Tang Feng Guo +8 位作者 Li Cui Qingkai Li Jialei Zhang Jianguo Wang Sha Yang Jingjing Meng Xinguo Li Ping Liu Shubo Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期17-34,共18页
Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study wa... Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes. 展开更多
关键词 PEANUT continuous cropping obstacle root growth pod yield
下载PDF
Evaluation of Productive Plant Landscapes in Cold Regions Based on a Multiple Cropping Model
7
作者 Wu Zhi-heng Zhang Jia-xin +2 位作者 Zhu Xuan-bo Pan Sheng-kai Yan Yong-qing 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期43-52,共10页
Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region prod... Four varieties of each rapeseed and buckwheat were planted in different sowing periods to explore a variety of planting patterns.A theoretical foundation was provided for the innovative application of cold region productive plant landscapes.The analytic hierarchy process was employed to develop a model for the evaluation of multiple cropping systems.A comprehensive evaluation was conducted to study 10 indicators in plant type,flower color,flowering period,flower volume,branch coverage,plot average yield,number of grains per plant,yield per plant,thousand-grain quality and ecological adaptability in four different varieties of each rapeseed and buckwheat.The results indicated that flower color,ecological adaptability,plot average yield and flower volume were the most important indicators for the value of productive plant landscapes in cold regions.Concerning the sowing period,the optimal combination of varieties and planting times were March 31 for Qingza No.5(rapeseed)and July 18 for Xinong T1211(buckwheat). 展开更多
关键词 multiple cropping model RAPESEED BUCKWHEAT analytic hierarchy process comprehensive evaluation
下载PDF
Inter-provincial Differences in Rice Multi-cropping Changes in Main Double-cropping Rice Area in China: Evidence from Provinces and Households 被引量:2
8
作者 WANG Renjing LI Xiubin +4 位作者 TAN Minghong XIN Liangjie WANG Xue WANG Yahui JIANG Min 《Chinese Geographical Science》 SCIE CSCD 2019年第1期127-138,共12页
Since the early 1980 s, the multi-cropping index for rice has decreased significantly in main double-cropping rice area in China, which is the primary double-cropping rice(DCR) production area. This decline may bring ... Since the early 1980 s, the multi-cropping index for rice has decreased significantly in main double-cropping rice area in China, which is the primary double-cropping rice(DCR) production area. This decline may bring challenges to food security in China because rice is the staple food for more than 60% of the Chinese population. It has been generally recognized that rapidly rising labor costs due to economic growth and urbanization in China is the key driving force of the ‘double-to-single' rice cropping system adaption. However, not all provinces have shown a dramatic decline in DCR area, and labor costs alone cannot explain this difference. To elucidate the reasons for these inter-provincial distinctions and the dynamics of rice cropping system adaption, we evaluated the influencing factors using provincial panel data from 1980 to 2015. We also used household survey data for empirical analysis to explore the mechanisms driving differences in rice multi-cropping changes. Our results indicated that the eight provinces in the study can be divided into three spatial groups based on the extent of DCR area decline, the rapidly-declining marginal, core, and stable zones. Increasing labor cost due to rapid urbanization was the key driving force of rice cropping system adaption, but the land use dynamic vary hugely among different provinces. These differences between zones were due to the interaction between labor price and accumulated temperature conditions. Therefore, increasing labor costs had the greatest impact in Zhejiang, Anhui, and Hubei, where the accumulated temperature is relatively low and rice multi-cropping index declined dramaticly. However, labor costs had little impact in Guangdong and Guangxi. Differences in accumulated temperature conditions resulted in spatially different labor demands and pressure on households during the busy season. As a result, there have been different profits and rice multi-cropping changes between provinces and zones. Because of these spatial differences, regionally appropriate policies that provide appropriate subsidies for early rice in rapidly-declining marginal zone such as Zhejiang and Hubei should be implemented. In addition, agricultural mechanization and the number of agricultural workers have facilitated double-cropping; therefore, small machinery and agricultural infrastructure construction should be further supported. 展开更多
关键词 multi-cropping change INTER-PROVINCIAL DIFFERENCES cropping system adaption accumulated temperature double-cropping RICE area China
下载PDF
Effect of intercropping on maize grain yield and yield components 被引量:8
9
作者 HUANG Cheng-dong LIU Quan-qing +1 位作者 LI Xiao-lin ZHANG Chao-chun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第8期1690-1700,共11页
Smallholders in developing countries commonly use intercropping to produce crops with higher yield and value. Many intercropping studies have been conducted under experimental conditions, but few studies have been per... Smallholders in developing countries commonly use intercropping to produce crops with higher yield and value. Many intercropping studies have been conducted under experimental conditions, but few studies have been performed in farmers’ fields. We conducted a 4-year study using data from real farms to examine the relationships between yield and yield components of intercropped maize in the North China Plain. Three field experiments were conducted to compare the suitability of different maize varieties in intercropping. In the farm study, the grain yield of maize intercropped with watermelon was reduced by more than one third as compared to maize in wheat-maize double cropping, mainly due to lower ear density and lower 100-grain weight. Under real farm conditions, the yield of intercropped maize increased with increasing ear density and 100-grain weight, while yield of sole maize increased with increasing grain number per ear and 100-grain weight. In the field experiments, the maize cultivars commonly used in double cropping gave similar yields when grown in the intercropping system and their yields were closely related to ear density and 100-grain weight. Our results demonstrated that ear density, rather cultivar, was a key factor affecting the productivity of intercropped maize. Therefore,maintaining high ear density is a practical way for promoting productivity of maize in farmers’ intercropping practices. 展开更多
关键词 MAIZE EAR DENSITY INTERcropping double cropping CULTIVARS
下载PDF
Integration of Growing Milk Vetch in Winter and Reducing Nitrogen Fertilizer Application Can Improve Rice Yield in Double-Rice Cropping System 被引量:18
10
作者 ZHOU Chun-huo ZHAO Zun-kang +4 位作者 PAN Xiao-hua HUANG Shan TAN Xue-ming WU Jian-fu SHI Qing-hua 《Rice science》 SCIE CSCD 2016年第3期132-143,共12页
To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integra... To study whether integrative fertilization [growing milk vetch in winter and reducing the dose of chemical nitrogen(N) fertilizer] can improve rice yield, and to reveal the underlying regulatory mechanisms for integrative fertilization, a three-year field trial including two treatments, milk vetch-rice-rice(MRR) and winter fallow-rice-rice(FRR), was conducted in 2010, 2011 and 2012.Our results demonstrated that the MRR treatment could significantly improve rice yield compared with the FRR treatment, especially when the application ratio of milk vetch and chemical fertilizer was 1:2.MRR treatment increased the effective panicle number and the spikelet number per panicle.In addition, a higher tillering number, leaf area index, photosynthetic-potential and photosynthetic-potential to grain ratio were observed in MRR treatment, which could provide enough dry matter for yield formation.Moreover, in MRR treatment, we discovered a higher transportation ratio and transformation ratio of dry matter in culm and leaves, and a stronger total sink capacity and spikelet-root bleeding intensity at the heading stage and 15 d after heading.Furthermore, the MRR treatment showed higher total N, phosphorus and potassium uptakes than FRR treatment, which was associated with the higher root dry weight in each soil layers.These results suggest that growing milk vetch in winter can improve rice yield under less chemical N fertilizer application, which is due to the improvement of soil nutrient status and the increased of rice root growth and development. 展开更多
关键词 MILK VETCH double-rice cropping system dry matter SINK-SOURCE circulation yield nitrogen RICE
下载PDF
Substitution of chemical fertilizer by Chinese milk vetch improves the sustainability of yield and accumulation of soil organic carbon in a double-rice cropping system 被引量:11
11
作者 ZHOU Xing LU Yan-hong +5 位作者 LIAO Yu-lin ZHU Qi-dong CHENG Hui-dan NIE Xin CAO Wei-dong NIE Jun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第10期2381-2392,共12页
The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the... The double-rice cropping system is a very important intensive cropping system for food security in China. There have been few studies of the sustainability of yield and accumulation of soil organic carbon (SOC) in the double-rice cropping system following a partial substitution of chemical fertilizer by Chinese milk vetch (Mv). We conducted a 10-year (2008–2017) field experiment in Nan County, South-Central China, to examine the double-rice productivity and SOC accumulation in a paddy soil in response to different fertilization levels and Mv application (22.5 Mg ha^–1). Fertilizer and Mv were applied both individually and in combination (sole chemical fertilizers, Mv plus 100, 80, 60, 40, and 0% of the recommended dose of chemical fertilizers, labeled as F100, MF100, MF80, MF60, MF40, and MF0, respectively). It was found that the grain yields of double-rice crop in treatments receiving Mv were reduced when the dose of chemical fertilizer was reduced, while the change in SOC stock displayed a double peak curve. The MF100 produced the highest double-rice yield and SOC stock, with the value higher by 13.5 and 26.8% than that in the F100. However, the grain yields increased in the MF80 (by 8.4% compared to the F100), while the SOC stock only increased by 8.4%. Analogous to the change of grain yield, the sustainable yield index (SYI) of double rice were improved significantly in the MF100 and MF80 compared to the F100, while there was a slight increase in the MF60 and MF40. After a certain amount of Mv input (22.5 Mg ha^–1), the carbon sequestration rate was affected by the nutrient input due to the stimulation of microbial biomass. Compared with the MF0, the MF100 and MF40 resulted in a dramatically higher carbon sequestration rate (with the value higher by 71.6 and 70.1%), whereas the MF80 induced a lower carbon sequestration rate with the value lower by 70.1% compared to the MF0. Based on the above results we suggested that Mv could partially replace chemical fertilizers (e.g., 40–60%) to improve or maintain the productivity and sustainability of the double-rice cropping system in South-Central China. 展开更多
关键词 CHINESE MILK VETCH fertilizer application levels rice YIELD soil organic carbon double-rice cropping system
下载PDF
Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop's rhizosphere 被引量:18
12
作者 WEN Xin-ya Eric Dubinsky +2 位作者 WU Yao YU Rong CHEN Fu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第8期1892-1902,共11页
Wheat and maize are increasingly used as alternative crops to sunflower monocultures that dominate the Hetao Irrigation District in China.Shifts from sunflower monocultures to alternate cropping systems may have signi... Wheat and maize are increasingly used as alternative crops to sunflower monocultures that dominate the Hetao Irrigation District in China.Shifts from sunflower monocultures to alternate cropping systems may have significant effects on belowground microbial communities which control nutrient cycling and influence plant productivity.In this research,rhizosphere bacterial communities were compared among sunflower,wheat and maize cropping systems by 454 pyrosequencing.These cropping systems included 2 years wheat(cultivar Yongliang 4) and maize(cultivar Sidan 19) monoculture,more than 20 years sunflower(cultivar 5009) monoculture,and wheat-sunflower and maize-sunflower rotation.In addition,we investigated rhizosphere bacterial communities of healthy and diseased plants at maturity to determine the relationship between plant health and rotation effect.The results revealed taxonomic information about the overall bacterial community.And significant differences in bacterial community structure were detected among these cropping systems.Eight of the most abundant groups including Proteobacteria,Bacteroidetes,Acidobacteria,Gemmatimonadetes,Chloroflexi,Actinobacteria,Planctomycetes and Firmicutes accounted for more than 85%of the sequences in each treatment.The wheat-wheat rhizosphere had the highest proportion of Acidobacteria,Bacteroidetes and the lowest proportion of unclassified bacteria.Wheat-sunflower cropping system showed more abundant Acidobacteria than maize-sunflower and sunflower monoculture,exhibiting some influences of wheat on the succeeding crop.Maize-maize rhizosphere had the highest proportion of γ-Proteobacteria,Pseudomonadales and the lowest proportion of Acidobacteria.Sunflower rotation with wheat and maize could increase the relative abundance of the Acidobacteria while decrease the relative abundance of the unclassified phyla,as was similar with the health plants.This suggests some positive impacts of rotation with wheat and maize on the bacterial communities within a single field.These results demonstrate that different crop rotation systems can have significant effects on rhizosphere microbiomes that potentially alter plant productivities in agricultural systems. 展开更多
关键词 bacterial community structure and diversity RHIZOSPHERE cropping system 454 pyrosequencing
下载PDF
Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut(Arachis hypogaea L.)seedlings under continuous cropping 被引量:9
13
作者 CUI Li GUO Feng +6 位作者 ZHANG Jia-lei YANG Sha MENG Jing-jing GENG Yun WANG Quan LI Xin-guo WAN Shu-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第2期407-416,共10页
The growth and yield of peanut are negatively affected by continuous cropping.Arbuscular mycorrhizal fungi(AMF)and calcium ions(Ca^(2+))have been used to improve stress resistance in other plants,but little is known a... The growth and yield of peanut are negatively affected by continuous cropping.Arbuscular mycorrhizal fungi(AMF)and calcium ions(Ca^(2+))have been used to improve stress resistance in other plants,but little is known about their roles in peanut seedling growth under continuous cropping.This study investigated the possible roles of the AMF Glomus mosseae combined with exogenous Ca^(2+)in improving the physiological responses of peanut seedlings under continuous cropping.G.mosseae combined with exogenous Ca^(2+)can enhance plant biomass,Ca^(2+)level,and total chlorophyll content.Under exogenous Ca^(2+)application,the F_v/F_m in arbuscular mycorrhizal(AM)plant leaves was higher than that in the control plants when they were exposed to high irradiance levels.The peroxidase,superoxide dismutase,and catalase activities in AM plant leaves also reached their maximums,and accordingly,the malondialdehyde content was the lowest compared to other treatments.Additionally,root activity,and content of total phenolics and flavonoids were significantly increased in AM plant roots treated by Ca^(2+)compared to either G.mosseae inoculation or Ca^(2+)treatment alone.Transcription levels of AhCaM,AhCDPK,AhRAM1,and AhRAM2 were significantly improved in AM plant roots under exogenous Ca^(2+)treatment.This implied that exogenous Ca^(2+)might be involved in the regulation of G.mosseae colonization of peanut plants,and in turn,AM symbiosis might activate the Ca^(2+)signal transduction pathway.The combination of AMF and Ca^(2+)benefitted plant growth and development under continuous cropping,suggesting that it is a promising method to cope with the stress caused by continuous cropping. 展开更多
关键词 ARACHIS HYPOGAEA L. ARBUSCULAR MYCORRHIZAL fungi continuous cropping exogenous calcium
下载PDF
A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops 被引量:8
14
作者 LIU Hang PAN Feng-juan +4 位作者 HAN Xiao-zeng SONG Feng-bin ZHANG Zhi-ming YAN Jun XU Yan-li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期866-880,共15页
Certain agricultural management practices are known to affect the soil microbial community structure;however,knowledge of the response of the fungal community structure to the long-term continuous cropping and rotatio... Certain agricultural management practices are known to affect the soil microbial community structure;however,knowledge of the response of the fungal community structure to the long-term continuous cropping and rotation of soybean,maize and wheat in the same agroecosystem is limited.We assessed the fungal abundance,composition and diversity among soybean rotation,maize rotation and wheat rotation systems and among long-term continuous cropping systems of soybean,maize and wheat as the effect of crop types on fungal community structure.We compared these fungal parameters of same crop between long-term crop rotation and continuous cropping systems as the effect of cropping systems on fungal community structure.The fungal abundance and composition were measured by quantitative real-time PCR and Illumina MiSeq sequencing.The results revealed that long-term continuous soybean cropping increased the soil fungal abundance compared with soybean rotation,and the fungal abundance was decreased in long-term continuous maize cropping compared with maize rotation.The long-term continuous soybean cropping also exhibited increased soil fungal diversity.The variation in the fungal community structure among the three crops was greater than that between long-term continuous cropping and rotation cropping.Mortierella,Guehomyces and Alternaria were the most important contributors to the dissimilarity of the fungal communities between the continuous cropping and rotation cropping of soybean,maize and wheat.There were 11 potential pathogen and 11 potential biocontrol fungi identified,and the relative abundance of most of the potential pathogenic fungi increased during the long-term continuous cropping of all three crops.The relative abundance of most biocontrol fungi increased in long-term continuous soybean cropping but decreased in long-term continuous maize and wheat cropping.Our results indicate that the response of the soil fungal community structure to long-term continuous cropping varies based upon crop types. 展开更多
关键词 continuous cropping crop rotation fungal community structure Illumina MiSeq sequencing
下载PDF
Timing and splitting of nitrogen fertilizer supply to increase crop yield and efficiency of nitrogen utilization in a wheat–peanut relay intercropping system in China 被引量:12
15
作者 Zhaoxin Liu Fang Gao +9 位作者 Yan Liu Jianqun Yang Xiaoyu Zhen Xinxin Li Ying Li Jihao Zhao Jinrong Li Bichang Qian Dongqing Yang Xiangdong Li 《The Crop Journal》 SCIE CAS CSCD 2019年第1期101-112,共12页
Agronomically optimizing the timing and rates of nitrogen(N) fertilizer application can increase crop yield and decrease N loss to the environment. Wheat(Triticum aestivum L.)–peanut(Arachis hypogaea L.) relay interc... Agronomically optimizing the timing and rates of nitrogen(N) fertilizer application can increase crop yield and decrease N loss to the environment. Wheat(Triticum aestivum L.)–peanut(Arachis hypogaea L.) relay intercropping systems are a mainstay of economic and food security in China. We performed a field experiment to investigate the effects of N fertilizer on N recovery efficiency, crop yield, and N loss rate in wheat–peanut relay intercropping systems in the Huang-Huai-Hai Plain, China during 2015–2017. The N was applied on the day before sowing, the jointing stage(G30) or the booting stage(G40) of winter wheat, and the anthesis stage(R1) of peanut in the following percentage splits: 50-50-0-0(N1), 35-35-0-30(N2), and 35-0-35-30(N3), using 300 kg N ha-1, with 0 kg N ha-1(N0) as control. ^(15)N-labeled(20.14 atom %) urea was used to trace the fate of N in microplots. The yields of wheat and peanut increased by 12.4% and 15.4% under the N2 and N3 treatments, relative to those under the N1 treatment. The ^(15)N recovery efficiencies( ^(15)NRE) were 64.9% and 58.1% for treatments N2 and N3, significantly greater than that for the N1 treatment(45.3%). The potential N loss rates for the treatments N2 and N3 were23.7% and 7.0%, significantly lower than that for treatment N1(30.1%). Withholding N supply until the booting stage(N3) did not reduce the wheat grain yield; however, it increased the N content derived from ^(15)N-labeled urea in peanuts, promoted the distribution of ^(15)N to pods, and ultimately increased pod yields in comparison with those obtained by topdressing N at jointing stage(N2). In comparison with N2, the N uptake and N recovery efficiency(NRE) of N3 was increased by 12.0% and 24.1%,respectively, while the apparent N loss decreased by 16.7%. In conclusion, applying N fertilizer with three splits and delaying topdressing fertilization until G40 of winter wheat increased total grain yields and NRE and reduced N loss. This practice could be an environment-friendly N management strategy for wheat–peanut relay intercropping systems in China. 展开更多
关键词 NITROGEN management Wheat–peanut RELAY intercropping system Crop yield NITROGEN recovery EFFICIENCY Apparent N loss
下载PDF
Effects of intercropping on rhizosphere soil microorganisms and root exudates of Lanzhou lily(Lilium davidii var.unicolor) 被引量:5
16
作者 CuiPing Hua YaJun Wang +4 位作者 ZhongKui Xie ZhiHong Guo YuBao Zhang Yang Qiu Le Wang 《Research in Cold and Arid Regions》 CSCD 2018年第2期159-168,共10页
Both yield and quality of Lanzhou lily(Lilium davidii var. unicolor) are seriously affected by continuous cropping. We attempted to understand the effects of intercropping on the obstacles associated with continuous c... Both yield and quality of Lanzhou lily(Lilium davidii var. unicolor) are seriously affected by continuous cropping. We attempted to understand the effects of intercropping on the obstacles associated with continuous cropping of Lanzhou lily(Lilium davidii var. unicolor). The changes of rhizosphere microbial biomass and diversity in interplanting and monoculturing systems were studied by using the Illumina Hi Seq sequencing technique. The contents and composition of lily root exudates were measured by gas chromatography–mass spectrometer(GC–MS). The intercropping results of Lanzhou lily showed:(1) There was no difference in the composition of the rhizosphere soil microbes at the phylum level, but the relative abundance of the microbes decreased; and the relative abundance of harmful fungi such as Fusarium sp. increased. The relative abundance of Pleosporales sp. and other beneficial bacteria were reduced. After OTU(operational taxonomic unit)clustering, there were some beneficial bacteria, such as Chaetomium sp., in the lily rhizosphere soil in the interplanting system that had not existed in the single-cropping system. We did not find harmful bacteria that had existed in the single-cropping systm in the rhizosphere soil of interplanting system. The above results indicated that the changes of relative abundance of soil fungi and bacteria in lily rhizosphere soil was not conducive to improving the ecological structure of rhizosphere soil microbes. At the same time, the microbial composition change is very complex—beneficial and yet inadequate at the same time.(2) Root exudates provide a matrix for the growth of microorganisms. Combined with the detection of root exudates, the decrease in the composition of the root exudates of the lily was probably the reason for the decrease of the relative abundance of microbes after intercropping. At the same time, the decrease of the relative content of phenolic compounds, which inhibit the growth of microorganisms, did not increase the relative content of rhizosphere soil microorganisms. Changes in amino acids and total sugars may be responsible for the growth of Fusarium sp.. The results showed that the intercropping pattern did not noticeably alleviate the obstacle to continuous cropping of Lanzhou lily, and the change of microbial biomass and diversity was even unfavorable. However, the emergence of some beneficial bacteria, the disappearance of harmful fungi, and other changes with intercropping are in favor of alleviation of obstacles to continuous cropping of Lanzhou lily. 展开更多
关键词 continuous cropping obstacle Lanzhou lily(Lilium davidii var.unicolor) RHIZOSPHERE microbial
下载PDF
Application of Chinese milk vetch affects rice yield and soil productivity in a subtropical double-rice cropping system 被引量:5
17
作者 CHEN Jing-rui QIN Wen-jing +4 位作者 CHEN Xiao-fen CAO Wei-dong QIAN Guo-min LIU Jia XU Chang-xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期2116-2126,共11页
Green manure can be used as a substitute for chemical fertilizer without reducing rice yield.We studied the responses of soil fertility and rice yield to different combinations of Chinese milk vetch(CMV;Astragalus sin... Green manure can be used as a substitute for chemical fertilizer without reducing rice yield.We studied the responses of soil fertility and rice yield to different combinations of Chinese milk vetch(CMV;Astragalus sinicus L.)and chemical fertilizer in a subtropical double-rice cropping system.Our goal is to reduce chemical fertilizer use and decrease environmental contamination.Compared with the recommended rate of chemical fertilizer(CF),both early-and late-rice yields in the two treatments supplied with 15 and 22.5 Mg CMV ha^-1 plus 60%CF(represented as 60 A and 60 B,respectively)showed no significant differences while the two treatments supplied with 30 and 37.5 Mg CMV ha^-1 plus 60%CF(represented as 60 C and 60 D,respectively)showed significantly higher values.The sustainable yield index(SYI)values in the 60 C and 60 D treatments with double-rice croppong system were significantly higher than those in other treatments(P<0.05).Early-rice yield showed a significant positive relationship with the Chinese milk vetch incorporation rate.The coefficients increased annually from 2009 to 2013 and then decreased in 2014.Soil organic matter increased over time by the end of the experiment in all of the treatment groups.Soil organic matter in 60 A,60 B and 60 C showed no significant difference compared with that in CF,while soil organic matter in 60 D was significantly higher than that in CF.The slopes of soil organic matter and total nitrogen over six years were the highest in 60 C and 60 D.The soil total nitrogen content in 60 A,60 B,60 C and 60 D was higher than that in CF,but the differences were not significant(P>0.05).Therefore,a relatively high Chinese milk vetch incorporation rate(≥30 Mg ha^-1)was more effective in improving the productivity and sustainability of paddy soil.The decreased coefficients of early-rice yield and the Chinese milk vetch incorporation rate in 2014 implied that the benefits of soil fertility and rice yield created by Chinese milk vetch input may decline after five years under a continuously high rate of Chinese milk vetch incorporation. 展开更多
关键词 Chinese milk vetch double-rice cropping system reduced chemical fertilizer sustainability
下载PDF
Effects of Different Cropping Patterns of Soybean and Maize Seedlings on Soil Enzyme Activities and MBC and MBN 被引量:4
18
作者 Yan Mu-chun Xu Ting-ting +1 位作者 Song Peng-hui Dai Jian-jun 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第4期42-47,共6页
Through the pot experiment, the effects of different cropping patterns of soybean and maize seedlings on rhizosphere soil urease, catalase, polyphenol oxidase and invertase activities and microbial biomass carbon (MBC... Through the pot experiment, the effects of different cropping patterns of soybean and maize seedlings on rhizosphere soil urease, catalase, polyphenol oxidase and invertase activities and microbial biomass carbon (MBC) and nitrogen (MBN) were studied. Six treatments of soybean-soybean, soybean-maize, soybean-mixed, maize-soybean, maize-maize and maize-mixed were conducted in pots. Results showed that catalase activity and invertase activity of maize-maize were the highest and significantly different from those of the other treatments except maize-soybean; soil polyphenol oxidase activity of soybean-maize was the highest, and reached significant level among the other treatments, but there was no significant difference of urease activity among treatment soils; MBC of maize-maize soil and MBN of maize-mixed soil reached the highest and significant levels compared with other treatments; MBC and C/N ratio had positive and very significant correlations with soil catalase activity and invertase activity, respectively. Therefore, different cropping patterns could affect rhizosphere soil enzyme activities and soil MBC and MBN, which influenced soil carbon and nitrogen mineralization. 展开更多
关键词 cropping pattern soil enzyme activity MBC MBN
下载PDF
Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China 被引量:3
19
作者 ZHOU Xing LIAO Yu-lin +4 位作者 LU Yan-hong Robert MREES CAO Wei-dong NIE Jun LI Mei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期2103-2115,共13页
Improved utilization of rice(Oryza sativa L.)straw and Chinese milk vetch(Astragalus sinicus L.,vetch)has positive effects on rice production.So far,few studies have investigated the productivity of vetch under differ... Improved utilization of rice(Oryza sativa L.)straw and Chinese milk vetch(Astragalus sinicus L.,vetch)has positive effects on rice production.So far,few studies have investigated the productivity of vetch under different residue management practices in double-rice cropping system.The effects of rice straw on the growth and nutrient accumulation of vetch across seven years(2011–2017)and the subsequent effects of rice straw and vetch on two succeeding rice crops in a vetch–rice–rice cropping system,with the vetch established by relay cropping,were examined.The seven-year double-rice experiment consisted of the following treatments:(1)100%chemical fertilizer(F-F100);(2)only vetch without chemical fertilizer(M-Con);(3)80%chemical fertilizer plus vetch plus a low-cutting height(low-retained stubble)with the removal of straw(M-F80);(4)80%chemical fertilizer plus vetch plus a low-cutting height with the retention of straw(M-F80-LR);(5)80%chemical fertilizer plus vetch plus a high-cutting height(high-retained stubble)with the retention of straw(M-F80-HR);and(6)no fertilizer(F-Con).The yields of the two rice crops after vetch were not affected by either the cutting height of stubble with retention of straw or by the management of straw(retention vs.removal)with low-cutting height of stubble.The yields of the two rice crops after vetch were significantly higher for M-F80-HR than for M-F80-LR,but the relative contributions of the high-cutting height and straw retention to the higher rice yield could not be determined in this study.The yield stability of the double-rice grain in M-F80-HR was also increased,as determined by a sustainable yield index.Significant increases in vetch biomass and nutrient uptake were observed in the fertilized treatments during the rice season compared with the unfertilized treatments.In M-F80-HR plots,improvements in the growing environment of the vetch by conserving soil water content were associated with the highest vetch biomass,nutrient uptake,and yield stability of vetch biomass.These increased nutrient inputs partially replaced the demand for chemical fertilizer and stimulated the rice yields.It can be concluded that retaining higher-cutting stubble residues with straw retention could be the best straw management practice for increasing the vetch biomass and nutrient use efficiency,thereby allowing utilization of high-cutting height with retention of straw and vetch to improve the stability of rice productivity in a double-rice cropping system. 展开更多
关键词 double-rice cropping system Chinese milk vetch biomass productivity rice straw sustainable yield index
下载PDF
Effects of Continuous Cropping of Panax notoginseng on the Properties of Rhizosphere Soil 被引量:4
20
作者 Kaiming LI Meixiang LIU +1 位作者 Qianhui SUN Zilong ZHANG 《Agricultural Science & Technology》 CAS 2017年第4期602-606,共5页
[Objective] This experiment aimed to investigate the effects of continuous cropping of Panax notoginseng on the properties of rhizosphere soil. [Method] A total of 12 rhizospheres oil samples were collected in the fie... [Objective] This experiment aimed to investigate the effects of continuous cropping of Panax notoginseng on the properties of rhizosphere soil. [Method] A total of 12 rhizospheres oil samples were collected in the fields continuously cropped with P. notoginseng for different years and the soil properties including pH value, contents of available N, available K, available P,total N, total K, total P and organic matter were determined. [Result] With the increase in the number of years of continuous cropping, seven soli indices: soil pH value, organic matter content, total N, total P, total K, available P and available K gradually increased, while available N showed a gradual downward trend. The contents of organic matter content, total N, total P, total K,available P, available K and available N after three years of continuous cropping were increased by 74.93%, 65.85%, 123.82%,18.78%, 341.67%, 120.16% and-32.16%, respectively, indicating that continuous cropping of P. notoginseng resulted in nutrient enrichment in rhizosphere soils. The pH value and available N in IBC(soil inside the border check) and UBC(soil under the border check) were higher than that in BBC(soil beside the border check), suggesting that the soil was gradually alkalized due to the continuous cropping of P. notoginseng. [Conclusion] These results suggest that pH change and nutrient imbalance may be the obstacles to the continuous cropping of P. notoginseng. 展开更多
关键词 Continuous cropping CORRELATION Nutrient enrichment Panax notoginseng Soil properties
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部