Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Here...Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.展开更多
Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C cou...Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C coupling.A Cu-Co bimetallic catalyst with CN vacancies is successfully developed by H_(2)cold plasma toward a high-efficiency CO_(2)RR into low-carbon alcohol.The Cu-Co PBA-V_(CN)(Prussian blue analogues with CN vacancies)electrocatalyst yields methanol and ethanol as major products with a total low-carbon alcohol FE of 83.8%(methanol:39.2%,ethanol:44.6%)at-0.9 V vs.RHE,excellent durability(100 h)and a small onset potential of-0.21 V.ATR-SEIRAS(attenuated total internal reflection surface enhanced infrared absorption spectroscopy)and DFT(density functional theory)reveal that the steric hindrance of V_(CN)can enhance the CO generation from*COOH,and the C–C coupling can also be increased by CO spillover on uniformly dispersed Cu atoms.This work provides a strategy for the design and preparation of electrocatalysts for CO_(2)RR into low-carbon alcohol products and highlights the impact of catalyst steric hindrance to catalytic performance.展开更多
HNO 3 -pretreated CNTs were employed as supports, and a special ultrasound-assisted impregnation method was designed to prepare supported Cu-Co catalysts for higher-alcohol synthesis from syngas. The catalysts used in...HNO 3 -pretreated CNTs were employed as supports, and a special ultrasound-assisted impregnation method was designed to prepare supported Cu-Co catalysts for higher-alcohol synthesis from syngas. The catalysts used in this work were characterized by N 2 adsorption-desorption, TEM, XRD, H 2 -TPR, CO-TPD techniques. It was found that the pre-treatment procedure of CNTs remarkably promoted the catalytic properties of the Cu-Co/CNTs catalysts. For the Cu-Co catalyst supported on CNTs pre-treated by 68 wt% HNO 3 , some active components were introduced into the CNTs channels, their dispersions and the amount of strongly adsorbed CO-species were improved. The CO conversion and alcohol yield on the HNO 3 -pretreated Cu-Co/CNTs catalyst were increased by ~21% and ~69%, respectively, compared with those on the normal Cu-Co/CNTs catalyst.展开更多
面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然...面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.展开更多
文摘Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.
基金the National Natural Science Foundation of China(21902017)the Project of Fundamental Research and Frontier Exploration of Chongqing(cstc2019jcyj-msxmX0052)+5 种基金the Foundation of Technological Innovation and Application Development of Chongqing(cstc2021jscx-msxmX0308)the Key Projects of Technology Innovation and Application Development of Chongqing(cstc2019jscx-gksbX0022)the Banan Science and Technology Foundation of Chongqing(2018TJ03,2020QC374)the Major Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-M202101101)the Youth Project of Science and Technology Research Program of Chongqing Education Commission of China(KJQN20211107)the Scientific Research Foundation of Chongqing University of Technology(2020ZDZ022)。
文摘Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C coupling.A Cu-Co bimetallic catalyst with CN vacancies is successfully developed by H_(2)cold plasma toward a high-efficiency CO_(2)RR into low-carbon alcohol.The Cu-Co PBA-V_(CN)(Prussian blue analogues with CN vacancies)electrocatalyst yields methanol and ethanol as major products with a total low-carbon alcohol FE of 83.8%(methanol:39.2%,ethanol:44.6%)at-0.9 V vs.RHE,excellent durability(100 h)and a small onset potential of-0.21 V.ATR-SEIRAS(attenuated total internal reflection surface enhanced infrared absorption spectroscopy)and DFT(density functional theory)reveal that the steric hindrance of V_(CN)can enhance the CO generation from*COOH,and the C–C coupling can also be increased by CO spillover on uniformly dispersed Cu atoms.This work provides a strategy for the design and preparation of electrocatalysts for CO_(2)RR into low-carbon alcohol products and highlights the impact of catalyst steric hindrance to catalytic performance.
基金supported by the Foundation of Shaanxi Educational Committee (2010JK608)the Research Foundation of XATU (204-000092)supported by the National Natural Science Foundation of China (205903603)
文摘HNO 3 -pretreated CNTs were employed as supports, and a special ultrasound-assisted impregnation method was designed to prepare supported Cu-Co catalysts for higher-alcohol synthesis from syngas. The catalysts used in this work were characterized by N 2 adsorption-desorption, TEM, XRD, H 2 -TPR, CO-TPD techniques. It was found that the pre-treatment procedure of CNTs remarkably promoted the catalytic properties of the Cu-Co/CNTs catalysts. For the Cu-Co catalyst supported on CNTs pre-treated by 68 wt% HNO 3 , some active components were introduced into the CNTs channels, their dispersions and the amount of strongly adsorbed CO-species were improved. The CO conversion and alcohol yield on the HNO 3 -pretreated Cu-Co/CNTs catalyst were increased by ~21% and ~69%, respectively, compared with those on the normal Cu-Co/CNTs catalyst.
文摘面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.