The effects of annealing process on the electrical conductivity and mechanical properties of Cu-Te alloys were studied via AG-10TA electronic universal machine, SB2230 digital electric bridge, SEM and EDS. The results...The effects of annealing process on the electrical conductivity and mechanical properties of Cu-Te alloys were studied via AG-10TA electronic universal machine, SB2230 digital electric bridge, SEM and EDS. The results show that recrystallization and precipitation occur simultaneously during the annealing process of Cu-Te alloys. Tellurium precipitates as Cu2Te second phase. The grain size increases with the increasing of annealing temperature and time. The electrical conductivity increases monotonously. The tensile strength of Cu-Te alloy is higher than that of pure copper.展开更多
The effects of annealing temperatre on the electrical conducitivity and mechanical property of Cu-Te alloys were studied via an AG-10TA electronic universal machine, an SB2230 digital electric bridge, SEM, EDS and XPS...The effects of annealing temperatre on the electrical conducitivity and mechanical property of Cu-Te alloys were studied via an AG-10TA electronic universal machine, an SB2230 digital electric bridge, SEM, EDS and XPS. The results show the electrical conductivity increases while the tensile strength fluctuates when the annealing temperature becomes higher because the recrystallization occurs during the annealing process, leading to the density of dislocation decreasing, grain size growing up, but the second phase precipitating sufficiently and simultaneously.展开更多
The microstructure,mechanical performance,and electrical conductivity of Cu-Te alloy fabricated by continuous extrusion were quantitatively investigated.The results demonstrate that the grain size of the Cu-Te alloy i...The microstructure,mechanical performance,and electrical conductivity of Cu-Te alloy fabricated by continuous extrusion were quantitatively investigated.The results demonstrate that the grain size of the Cu-Te alloy is refined significantly by incomplete dynamic recrystallization.The Cu2Te phase stimulates recrystallization and inhibits subgrain growth.After extrusion,the tensile strength increases from217.8±4.8 MPa to 242.5±3.7 MPa,the yield strength increases from 65.1±3.5 MPa to 104.3±3.8 MPa,and the yield to tensile strength ratio is improved from 0.293±0.015 to 0.43±.0.091,while the electrical conductivity of room temperature decreases from 95.8±0.38%International Annealed Cu Standard(IACS)to 94.0%±0.32%IACS.The quantitative analysis shows that the increment caused by dislocation strengthening and boundary strengthening account for 84.6%of the yield strength of the extruded Cu-Te alloy and the electrical resistivity induced by grain boundaries and dislocations accounts for 1.6%of the electrical resistivity of the extruded Cu-Te alloy.Dislocations and boundaries contribute greatly to the increase of yield strength,but less to the increase of electrical resistivity.展开更多
New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile...New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile strength of above 510 MPa, high elongation of 11%and high electrical conductivity of over 63%IACS can be simultaneously obtained in Cu-0.47Mg-0.20Te-0.04Y alloy after deforming and annealing treatment. Effects of purification together with the grain refining by Y and solid-solution strengthening by Mg are appropriate for enhancing mechanical properties and electrical conductivity of the copper alloys.展开更多
Microstructures and element distributions of the as-cast, hot-rolled and cold-rolled Cu-Mg-Te-Y alloys were studied. Effects of rolling process and annealing temperature on the properties of the Cu-Mg-Te-Y alloys were...Microstructures and element distributions of the as-cast, hot-rolled and cold-rolled Cu-Mg-Te-Y alloys were studied. Effects of rolling process and annealing temperature on the properties of the Cu-Mg-Te-Y alloys were correspondingly investigated. The results indicate that the Mg element is homogeneously distributed in the matrix and the fragmentized Cu2Te phase is dispersed in the matrix after hot rolling. Then, the Cu2Te phase is further stretched to strip shape after the cold rolling process. The microstructures of the cold-rolled alloy keep unchanged for the sample annealed below 390 ℃ for 1 h. However, after annealing at 550 ℃ for 1 h, the copper alloy with fibrous microstructures formed during the cold rolling process recrystallizes, leading to an obvious drop of hardening effect and an increase of electrical conductivity. The Cu-Mg-Te-Y alloy with better comprehensive properties is obtained by annealing at 360-390 ℃.展开更多
基金Project(50201010) supported by the National Natural Science Foundation of China Project(20010610013) supported by Dectoral Subject Foundation of Ministry of Eduction
文摘The effects of annealing process on the electrical conductivity and mechanical properties of Cu-Te alloys were studied via AG-10TA electronic universal machine, SB2230 digital electric bridge, SEM and EDS. The results show that recrystallization and precipitation occur simultaneously during the annealing process of Cu-Te alloys. Tellurium precipitates as Cu2Te second phase. The grain size increases with the increasing of annealing temperature and time. The electrical conductivity increases monotonously. The tensile strength of Cu-Te alloy is higher than that of pure copper.
基金Funded by the National Natural Science Foundation of China(No. 50201010)Doctoral Subject Foundation of Ministry of Education (No. 20010610013)
文摘The effects of annealing temperatre on the electrical conducitivity and mechanical property of Cu-Te alloys were studied via an AG-10TA electronic universal machine, an SB2230 digital electric bridge, SEM, EDS and XPS. The results show the electrical conductivity increases while the tensile strength fluctuates when the annealing temperature becomes higher because the recrystallization occurs during the annealing process, leading to the density of dislocation decreasing, grain size growing up, but the second phase precipitating sufficiently and simultaneously.
基金the National Key Research and Development Program of China(No.2018YFB2001800)Key Scientific and Technological Project in Liaoning Province of China in 2021(No.2021JH/10400080)Dalian High Level Talent Innovation Support Program in Liaoning Province of China in 2021(No.2021RD06)。
文摘The microstructure,mechanical performance,and electrical conductivity of Cu-Te alloy fabricated by continuous extrusion were quantitatively investigated.The results demonstrate that the grain size of the Cu-Te alloy is refined significantly by incomplete dynamic recrystallization.The Cu2Te phase stimulates recrystallization and inhibits subgrain growth.After extrusion,the tensile strength increases from217.8±4.8 MPa to 242.5±3.7 MPa,the yield strength increases from 65.1±3.5 MPa to 104.3±3.8 MPa,and the yield to tensile strength ratio is improved from 0.293±0.015 to 0.43±.0.091,while the electrical conductivity of room temperature decreases from 95.8±0.38%International Annealed Cu Standard(IACS)to 94.0%±0.32%IACS.The quantitative analysis shows that the increment caused by dislocation strengthening and boundary strengthening account for 84.6%of the yield strength of the extruded Cu-Te alloy and the electrical resistivity induced by grain boundaries and dislocations accounts for 1.6%of the electrical resistivity of the extruded Cu-Te alloy.Dislocations and boundaries contribute greatly to the increase of yield strength,but less to the increase of electrical resistivity.
基金Project (50875031) supported by the National Natural Science Foundation of ChinaProject (20095263005) supported by Aviation Science Foundation of China
文摘New copper alloys with high mechanical properties and high electrical conductivity were prepared, and the effects of addition of minor Mg and Y elements on microstructures and properties were studied. The high tensile strength of above 510 MPa, high elongation of 11%and high electrical conductivity of over 63%IACS can be simultaneously obtained in Cu-0.47Mg-0.20Te-0.04Y alloy after deforming and annealing treatment. Effects of purification together with the grain refining by Y and solid-solution strengthening by Mg are appropriate for enhancing mechanical properties and electrical conductivity of the copper alloys.
基金Project (50875031) supported by the National Natural Science Foundation of ChinaProject (DUT122D205) supported by the Fundamental Research Funds for the Central Universities,China
文摘Microstructures and element distributions of the as-cast, hot-rolled and cold-rolled Cu-Mg-Te-Y alloys were studied. Effects of rolling process and annealing temperature on the properties of the Cu-Mg-Te-Y alloys were correspondingly investigated. The results indicate that the Mg element is homogeneously distributed in the matrix and the fragmentized Cu2Te phase is dispersed in the matrix after hot rolling. Then, the Cu2Te phase is further stretched to strip shape after the cold rolling process. The microstructures of the cold-rolled alloy keep unchanged for the sample annealed below 390 ℃ for 1 h. However, after annealing at 550 ℃ for 1 h, the copper alloy with fibrous microstructures formed during the cold rolling process recrystallizes, leading to an obvious drop of hardening effect and an increase of electrical conductivity. The Cu-Mg-Te-Y alloy with better comprehensive properties is obtained by annealing at 360-390 ℃.