Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f ...Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.展开更多
In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of t...In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of this notation, we study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, we present the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces, and the theory of functional equations.展开更多
In this paper, the direct method and the fixed point alternative method are implemented to give Hyers-Uiam-Rassias stability of the functional equation 6f(x+y)-6f(x-y)+4f(3y)=3f(x+2y)-3f(x-2y)+9f(2y) i...In this paper, the direct method and the fixed point alternative method are implemented to give Hyers-Uiam-Rassias stability of the functional equation 6f(x+y)-6f(x-y)+4f(3y)=3f(x+2y)-3f(x-2y)+9f(2y) in fuzzy Banach spaces. We can find the range of approximate solutions obtained using the direct method are less than those obtained by using the fixed point alternative method for the above and the functional equation.展开更多
In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation2f(x + 2y) + f(2x - y) = 5f(x + y) + 5f(x...In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation2f(x + 2y) + f(2x - y) = 5f(x + y) + 5f(x - y)+ 15f(y)in the spirit of Hyers, Ulam, Rassias and Gavruta.展开更多
In this paper,we obtain the general solution and stability of the Jensen-cubic functional equation f((x1+x2)/2,2y1+y2)+f((x1+x2)/2,2(y1-y2)) = f(x1,y1 +y2)+f(x1,y1-y2)+6f(x1,y1+ f(x2,y1y2)+f...In this paper,we obtain the general solution and stability of the Jensen-cubic functional equation f((x1+x2)/2,2y1+y2)+f((x1+x2)/2,2(y1-y2)) = f(x1,y1 +y2)+f(x1,y1-y2)+6f(x1,y1+ f(x2,y1y2)+f(x2,y1-y2)+6f(x2,y1).展开更多
In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 i...In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 is an integer. Furthermore, we prove the stability by the fixed point method.展开更多
The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of no...The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.展开更多
In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14...In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14f(x-6y)+f(x-7y)=14!f(y), investigate the general solution and prove the stability of this quattuordecic functional equation in quasi β-normed spaces by using the fixed point method.展开更多
Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk...Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk),where p, q, d are integers greater than 1, in non-Archimedean normed spaces.展开更多
We present results on approximate solutions to the biadditive equationf(x+y,z-w)+f(x-y,z+w)=2f(x,z)-2f(y,w)on a restricted domain. The proof is based on a quite recent fixed point theorem in some function s...We present results on approximate solutions to the biadditive equationf(x+y,z-w)+f(x-y,z+w)=2f(x,z)-2f(y,w)on a restricted domain. The proof is based on a quite recent fixed point theorem in some function spaces. Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it. In this way we obtain inequalities characterizing biadditive mappings and inner product spaces. Our outcomes are connected with the well known issues of Ulam stability and hyperstability.展开更多
Through the paper, a general solution of a mixed type functional equation in fuzzy Banach space is obtained and by using the fixed point method a generalized Hyers-Ulam-Rassias stability of the mixed type functional e...Through the paper, a general solution of a mixed type functional equation in fuzzy Banach space is obtained and by using the fixed point method a generalized Hyers-Ulam-Rassias stability of the mixed type functional equation in fuzzy Banach space is proved.展开更多
The aim of this paper is to introduce and solve the p-radical functional equation ■We also state an analogue of the fixed point theorem [12, Theorem 1] in 2-Banach spaces and investigate stability for this equation i...The aim of this paper is to introduce and solve the p-radical functional equation ■We also state an analogue of the fixed point theorem [12, Theorem 1] in 2-Banach spaces and investigate stability for this equation in 2-Banach spaces.展开更多
In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …...In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …, 5}, a_1,…, a_k are fixed nonzero reals when p ∈ {1,3,5} and are fixed positive reals when p ∈{2,4}.展开更多
Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach mod...Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach modules over a unital Banach algebra.展开更多
In this paper, we establish fuzzy stability of the orthogonal Cauchy functional equations f(x + y) = f(x) + f(y), x ⊥ y and the orthogonal Cauchy functional of P exider type f(x + y) = g(x) + h(y), x ⊥ y in which ⊥...In this paper, we establish fuzzy stability of the orthogonal Cauchy functional equations f(x + y) = f(x) + f(y), x ⊥ y and the orthogonal Cauchy functional of P exider type f(x + y) = g(x) + h(y), x ⊥ y in which ⊥ is the orthogonality in the sense of Rtz.展开更多
In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a m...In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m ...In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m is a natural number greater than 1,in random normed spaces. 更多还原展开更多
In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hye...In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.展开更多
文摘Let G be an Abelian group and letρ:G×G→[0,∞) be a metric on G. Let E be a normed space. We prove that under some conditions if f:G→E is an odd function and Cx:G→E defined by Cx(y):=2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y) is a cubic function for all x∈G, then there exists a cubic function C:G→E such that f?C is Lipschitz. Moreover, we investigate the stability of cubic functional equation 2 f (x+y)+2 f (x-y)+12 f (x)-f (2x+y)-f (2x-y)=0 on Lipschitz spaces.
基金supported by the Natural Science Foundation of Yibin University (No. 2009Z003)
文摘In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of this notation, we study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, we present the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces, and the theory of functional equations.
文摘In this paper, the direct method and the fixed point alternative method are implemented to give Hyers-Uiam-Rassias stability of the functional equation 6f(x+y)-6f(x-y)+4f(3y)=3f(x+2y)-3f(x-2y)+9f(2y) in fuzzy Banach spaces. We can find the range of approximate solutions obtained using the direct method are less than those obtained by using the fixed point alternative method for the above and the functional equation.
基金Korea Research Foundation Grant KRF-2007-313-C00033
文摘In this paper, we will find out the general solution and investigate the generalized Hyers-Ulam-Rassias stability problem for the following cubic functional equation2f(x + 2y) + f(2x - y) = 5f(x + y) + 5f(x - y)+ 15f(y)in the spirit of Hyers, Ulam, Rassias and Gavruta.
文摘In this paper,we obtain the general solution and stability of the Jensen-cubic functional equation f((x1+x2)/2,2y1+y2)+f((x1+x2)/2,2(y1-y2)) = f(x1,y1 +y2)+f(x1,y1-y2)+6f(x1,y1+ f(x2,y1y2)+f(x2,y1-y2)+6f(x2,y1).
文摘In this paper, we investigate the general solution and the stability of a cubic functional equation f(x + ny) + f(x - ny) + f(nx) = n^2 f(x + y) + n^2 f(x - y)+ (n^3 - 2n^2 + 2)f(x),where n ≥ 2 is an integer. Furthermore, we prove the stability by the fixed point method.
基金supported by the Natural Science Foundation of Yibin University(No.2009Z03)
文摘The generalized stability of the Euler-Lagrange quadratic mappings in the framework of non-Archimedean random normed spaces is proved. The interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean spaces, and the theory of functional equations is presented.
文摘In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14f(x-6y)+f(x-7y)=14!f(y), investigate the general solution and prove the stability of this quattuordecic functional equation in quasi β-normed spaces by using the fixed point method.
文摘Using the fixed point and direct methods, we prove the Hyers-Ulam stability of the following Cauchy-Jensen additive functional equation 2f(p∑i=1xi+q∑j=1yj+2d∑k=1zk/2)=p∑i=1f(xi)+q∑j=1f(yj)+2d∑k=1f(zk),where p, q, d are integers greater than 1, in non-Archimedean normed spaces.
文摘We present results on approximate solutions to the biadditive equationf(x+y,z-w)+f(x-y,z+w)=2f(x,z)-2f(y,w)on a restricted domain. The proof is based on a quite recent fixed point theorem in some function spaces. Our main results state that, under some weak natural assumptions, functions satisfying the equation approximately (in some sense) must be actually solutions to it. In this way we obtain inequalities characterizing biadditive mappings and inner product spaces. Our outcomes are connected with the well known issues of Ulam stability and hyperstability.
文摘Through the paper, a general solution of a mixed type functional equation in fuzzy Banach space is obtained and by using the fixed point method a generalized Hyers-Ulam-Rassias stability of the mixed type functional equation in fuzzy Banach space is proved.
文摘The aim of this paper is to introduce and solve the p-radical functional equation ■We also state an analogue of the fixed point theorem [12, Theorem 1] in 2-Banach spaces and investigate stability for this equation in 2-Banach spaces.
文摘In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …, 5}, a_1,…, a_k are fixed nonzero reals when p ∈ {1,3,5} and are fixed positive reals when p ∈{2,4}.
基金supported by the National Natural Science Foundation of China (10671013,60972089,11171022)
文摘Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach modules over a unital Banach algebra.
基金Supported by Opening Foundation of Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing(Grant No.2017CSOBDP0103)Guangxi Universitys Science and Technology Research Project(Grant No.201012MS185)Science and Technology Foundation of Guizhou Province(Grant No.LKS[2012]34)
文摘In this paper, we establish fuzzy stability of the orthogonal Cauchy functional equations f(x + y) = f(x) + f(y), x ⊥ y and the orthogonal Cauchy functional of P exider type f(x + y) = g(x) + h(y), x ⊥ y in which ⊥ is the orthogonality in the sense of Rtz.
基金This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
文摘In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘In this paper,using the fixed-point and direct methods,we prove the HyersUlam stability of the following m-Appolonius type functional equation:∑mi=1 f(z-xi)=mf(z-1/m2∑mi=1xi)-1/m∑1≤i〈j≤mf(xi+xj),where m is a natural number greater than 1,in random normed spaces. 更多还原
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(NRF-2012R1A1A2004299)
文摘In this paper, we solve the quadratic p-functional inequalities ……where p is a fixed complex number with |P| 〈 1, and^where p is a fixed complex number with |P| 〈 2^-1.Using the direct method, we prove the Hyers-Ulam stability of the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces and prove the Hyers-Ulam stability of quadratic p-functional equations associated with the quadratic p-functional inequalities (0.1) and (0.2) in complex Banach spaces.