The increasing amount of cyanided tailings produced as a by-product has gained significant attention in recent years because of the rapid development of the gold industry and extensive exploitation of gold mineral res...The increasing amount of cyanided tailings produced as a by-product has gained significant attention in recent years because of the rapid development of the gold industry and extensive exploitation of gold mineral resources. The effective use of these secondary resources is becoming an important and urgent problem for all environmental protection staff. Manganese-catalyzed ozonation for the pre-oxidation of cyanided tailings was studied and the effects of Mn2+dosage, initial sulfuric acid concentration, ozone volume flow, temperature and agitation speed on pretreatment were examined. The optimum reaction conditions were observed to be: ore pulp density 2.5%, agitation speed 700 r/min,temperature 60°C, Mn2+dosage 40 g/L, ozone volume flow 80 L/hr, initial sulfuric acid concentration 1 mol/L, and reaction time 6 hr. Under these conditions, the leaching rate of Fe and weight loss could reach 94.85% and 48.89% respectively. The leaching process of cyanided tailings by Mn2+/O3 was analyzed, and it was found that the leaching of pyrite depends on synergetic oxidation by high-valent manganese and O3, in which the former played an important part.展开更多
The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction ...The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.展开更多
Cyanide poisoning is one of the most dangerous poisonings, and it can be absorbed into the body through the mouth, inhalation and through the skin. A 32-year-old female patient was admitted to our poison control cente...Cyanide poisoning is one of the most dangerous poisonings, and it can be absorbed into the body through the mouth, inhalation and through the skin. A 32-year-old female patient was admitted to our poison control center because of high fever, severe vomiting, and seizures. Physical examination found that the patient was drowsy, had a high fever of 40 degrees Celsius, pulse of 140 beats/minute, and increased tendon and bone reflexes. Exploiting the patient’s information, it was discovered that the patient bought Cyanide to drink with the intention of committing suicide. The patient was quickly treated with gastric lavage and activated charcoal. Echocardiography recorded EF: 35%, reduced movement of the entire myocardium. CK blood test: 4562 U/L. The patient’s condition rapidly deteriorated and the patient was made ECMO, IHD and CVVHDF. After 3 days of treatment, the patient’s condition did not improve, so the family asked for the patient to go home. This article aims to describe the rapidly progressing and severe damage to the heart and muscles of patients with cyanide poisoning.展开更多
The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the ma...The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the machines in order to reduce the workload of the worker while keeping a high productivity and a quality in great demand. Furthermore, the use of cyanide in leaching tanks is a necessity in the gold recovery process. This consumption of cyanide must be optimal in these tanks in order to have a good recovery while controlling the concentration of cyanide. Cyanide is one of the most expensive products for mining companies. On a completely different note, we see huge variations during the addition of cyanide. Following a recommendation from the metallurgical and operations teams, the control team carried out an analysis of the problem while proposing a solution to reduce the variability around plus or minus 10% of the addition setpoint through automation. It should be noted that this automatic optimization by monitoring the concentration of cyanide, made use of industrial automation which is a technique which ensures the operation of the ore processing chain without human intervention. In other words, it made it possible to substitute a machine for man. So, this leads us to conduct a study on concentration levels in the real world. The results show that the analysis of the modeling of the cyanide consumption optimization system is an appropriate solution to eradicate failures in the mineral processing chain. The trend curves demonstrate this resolution perfectly.展开更多
Background: Cassava tuber crop is a staple food rich in carbohydrates and utilized in various forms by millions of Nigerians. The storage root of the cassava contains linamarin, a cyanogenic glycoside that is easily h...Background: Cassava tuber crop is a staple food rich in carbohydrates and utilized in various forms by millions of Nigerians. The storage root of the cassava contains linamarin, a cyanogenic glycoside that is easily hydrolyzed to release cyanide salt compounds which is toxic to the nervous system especially the optic nerve, sometimes leading to optic neuropathy and visual impairment. Aim: The aim of this study is to find out the impact of selected processing methods of high-level cyanide in cassava on optic neuropathy in Wistar albino rats. Methodology: Twenty-four Wistar albino rats were fed with different concentration and duration of predetermined high-cyanide content cassava root cultivar which was processed using different processing methods adopted by various communities in Rivers State, Nigeria (for human consumption). A control group of 3 Wistar albino rats was fed with normal “Growth Mesh” meals. The pre and post weights of the animals and the fundoscopic optic nerve status of the rats were evaluated after 30 and 60 days. SPSS Version 25 was employed for descriptive and inferential statistical analyses. A p-value of ≤0.05 was considered statistically significant. Results: The Cassava species available in Rivers State have high cyanide content (2336.79 mg CN<sup>-</sup>/kg dry weight of cassava). There was statistically significant reduction in the cyanide content (p = 0.000) depending on the various common processing methods (into garri for human consumption): 24 hours, 48 hours, fermentation;with and without red palm oil additive. The individual weights as well as the mean weight of the 24 rats in the experimental group increased gradually from the first week to the 9<sup>th</sup> week with a slight weight reduction on the third and fourth weeks which was not statistically significant (p = 0.092). However, there was a steady increase in the weights of the animals in the control group throughout the 9 weeks. Varying degrees of optic neuropathy occurred, worse with the rats that had 24-hour fermented cassava twice daily for 60 days. The intra and inter group differences in the optic disc changes was statistically significant (p = 0.000). Conclusion: Longer duration of processing cassava roots into garri for human consumption reduces its cyanide content and minimizes the adverse impact on the optic nerve.展开更多
Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the wat...Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 ~C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.展开更多
The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their...The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.展开更多
Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and remova...Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and removal of Cu (0.095 mmol/L) were investigated as a function of Fe(Ⅵ) doses from 0.3-2.00 mmol/L at pH 10.0. It was found that Fe(Ⅵ) could readily oxidize CN and the reduction of Fe(Ⅵ) into Fe(Ⅲ) might serve efficiently for the removal of free copper ions. The increase in Fe(Ⅵ) dose apparently favoured the CN oxidation as well as Cu removal. Moreover, the pH dependence study (pH 10.0-13.0) revealed that the oxidation of CN was almost unaffected in the studied pH range (10.0-13.0), however, the maximum removal efficiency of Cu was obtained at pH 13.0. Similarly, treatment was carded out for CN-Ni system having the initial Ni concentration of 0.170 mmol/L and CN concentration of 1.00 mmol with Fe(Ⅵ) dose 2.00 mmol at various pH values (10.0-12.0). Results showed a partial oxidation of CN and partial removal of Ni. It can be observed that Fe(Ⅵ) can partially degrade the CN-Ni complex in this pH range. Further, Fe(Ⅵ) was applied for the treatment of simulated industrial waste/effluent waters treatment containing CN, Cu, and Ni.展开更多
The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems...The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems was demonstrated. Severe interference by the copper containing sulphides with cyanide leaching of gold is observed at p(NaCN)〈5 g/L. This is consistent with speciation calculations. Ammonia pretreatment is shown to readily eliminate the copper interference, allowing almost complete extraction of gold with concomitantly low reagent consumption in subsequent cyanide leaching. In ammoniacal cyanide system, Box-Behnken experimental design shows the main and interaction effects of NH3, NaCN and Pb(NO3)2. The concentrations of NH3 and NaCN are statistically confirmed to be significant factors affecting extraction of gold while the effect of Pb(NO3)2 is limited. Increasing the concentration of NH3 improves the selectivity and extent of gold extraction and reduces the cyanide consumption. The contribution of reagent interactions to gold extraction is statistically insignificant. These findings highlight that ammonia pretreatment and ammonia-cyanide leaching are promising approaches for the treatment of gold ores with high copper sulphide content.展开更多
The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation result...The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.展开更多
Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanid...Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.展开更多
Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to...Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baical- ensis Georgi at concentrations of 18.98, 37.36, and 75.92 gg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive pro- duction of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na+-K*-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide.展开更多
The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrati...The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrations was examined and the stoichiometric extraction constant of Cu(CN)32- with LIX 7950 was calculated.Both the distribution coefficient and the stoichiometric extraction constant of Cu(CN)3 2-with LIX 7950 decrease when the temperature is varied from 25℃to 45℃, indicating the extraction process is exothermic.The calculated enthalpy change of the reaction(-HΘ)is about-190 kJ/mol.The copper extraction isotherms under different molar ratios of cyanide to copper are established.The preferential extraction of Cu(CN)32- over Cu(CN)4 3-and CN -has been confirmed and a high cyanide-to-copper molar ratio tends to suppress copper loading. The loaded copper and cyanide can be stripped efficiently by the moderately strong NaOH solutions(0.5-1.0 mol/L)and the presence of NaCN in the stripping solution facilitates copper stripping.展开更多
Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction...Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the twomineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimumcondition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BXimproved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals.The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX andthe surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface ofchalcopyrite after cyanide treatment is chemical adsorption.展开更多
Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was exam...Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was examined by XRD, DSC-TG, and chemical analysis technologies. In the absence of ferric oxide, sodium cyanide decomposes at 587.4 ℃ in air and 879.2 ℃ in argon atmosphere. In the presence of ferric oxide, about 60% of sodium cyanide decomposes at 350 ℃ for 30 min in argon, while almost all sodium cyanide decomposes within 30 min in air or O2 with mass ratio of ferric oxide to sodium cyanide of 1:1. The increase of ferric oxide addition, temperature, and heating time facilitates the destruction of sodium cyanide. It is believed that with ferric oxide addition, NaCN reacts with Fe2O3 to form Na4Fe(CN)6, Na2CO3, NaNO2 and Fe3O4 in argon. NaCN decomposes into NaCNO, Na4Fe(CN)6, minor NaNO2, and the formed NaCNO and Na4Fe(CN)6 further decompose into Na2CO3, CO2, N2, FeOx, and minor NOx in air or O2.展开更多
Differences of cyanide leaching between the calcine and the dust from a refractory gold concentrate were investigated by comparative method. Results showed that gold leaching efficiencies of the calcine and the dust w...Differences of cyanide leaching between the calcine and the dust from a refractory gold concentrate were investigated by comparative method. Results showed that gold leaching efficiencies of the calcine and the dust were 85.31% and 54.30%, respectively, with direct cyanidation. Contents and existing forms of arsenic and carbon were the main reasons for those differences. The maximum gold leaching efficiencies of the calcine and the dust were 87.70% and 58.60%, respectively, with cyanidation after NaOH pre-leaching. Harmful elements removal, gold loss in NaOH pre-leaching and iron oxides hindrance codetermined gold leaching efficiencies of the calcine and the dust. After H2SO4 pre-leaching, the maximum gold leaching efficiencies of the calcine and the dust achieved 94.96% and 80.40%, respectively. The effect of carbonaceous matter was the main reason for differences for leaching efficiencies of the calcine and the dust. Based on those differences, two proper gold extraction processes were put forward, and gold leaching efficiencies for the calcine and the dust achieved 94.91% and 91.90%, respectively.展开更多
The effects of mercury ions on gold cyanidation were studied. The results show that under low cyanide concentration, gold cyanide process is controlled by CN- transfer, while at higher cyanide concentration, there for...The effects of mercury ions on gold cyanidation were studied. The results show that under low cyanide concentration, gold cyanide process is controlled by CN- transfer, while at higher cyanide concentration, there forms passivation on gold surface. Therefore, chemical oxidation of gold in cyanide solution of higher concentration is controlled by surface reaction. Small quantity of additions of mercury ions bring about great increases in anodic gold dissolution rate, decreases the passivation and reduces the equilibrium activated energy. In addition, they also markedly change the effect pattern of cyanide concentration. Mercury ions show positive effects on cathodic reduction of oxygen and raise the rate of electrochemical step of the cathodic reduction of oxygen. Addition of a certain amount of hydrogen peroxide is confirmed to be an effective way for intensification of cathodic process on gold electrode. Active potential range and current peak on anodic dissolution are enlarged when being co-intensified with Hg^2+ and hydrogen peroxide. Co-intensifying effect may be obtained and gold from gold concentrates. gold leaching rate is considerably increased on cyanide leaching of展开更多
Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide ...Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide assistant leaching on three different types of materials which were classified as a refractory sulphide gold concentrate,an easily leachable sulphide gold concentrate,and a low grade oxide gold ore according to their leaching characteristics.The results showed that,favorable co-intensification effects on the three materials were obtained and leaching time of gold was effectively shortened to no longer than 12 h from 16 to 24 h for hydrogen peroxide assistant leaching.For the five tested heavy metal ions,Bi3+and Tl+ presented co-intensifying effect on all the three materials,and Hg2+ caused co-intensifying effect on both refractory and easily leachable sulphide gold concentrates,and Pb2+ and Ag+ only had co-intensifying effect on the easily leachable sulphide gold concentrate.展开更多
Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by ...Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by three chemical methods.The results showed that the residue mainly contained Si,S and Fe.Pyrite was the main metallic mineral,and the iron-complex cyanides make cyanide removal difficult.The minerals in residues were in ultrafine particle size with high monomer dissociation degrees.In H_(2)O_(2)oxidation process,the self-decomposition and side reactions resulted in high consumption of H_(2)O_(2).In Na_(2)S_(2)O_(5)-air oxidation process,the time for complete process was long because of the reactions between Na_(2)S_(2)O_(5)and O_(2).Na_(2)SO_(3)oxidation method was found to be a new method for cyanide removal without air inflation device.The cyanide content was reduced to the national standard level in 90 min at pH 9.0 with optimum Na_(2)SO_(3)dose of 2.0 g/L.展开更多
The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid ...The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.展开更多
基金supported by the Innovation Foundation of Donghua University for Doctoral Candidates (No. BC201132)the Shanghai Leading Academic Discipline Project (No. B604)
文摘The increasing amount of cyanided tailings produced as a by-product has gained significant attention in recent years because of the rapid development of the gold industry and extensive exploitation of gold mineral resources. The effective use of these secondary resources is becoming an important and urgent problem for all environmental protection staff. Manganese-catalyzed ozonation for the pre-oxidation of cyanided tailings was studied and the effects of Mn2+dosage, initial sulfuric acid concentration, ozone volume flow, temperature and agitation speed on pretreatment were examined. The optimum reaction conditions were observed to be: ore pulp density 2.5%, agitation speed 700 r/min,temperature 60°C, Mn2+dosage 40 g/L, ozone volume flow 80 L/hr, initial sulfuric acid concentration 1 mol/L, and reaction time 6 hr. Under these conditions, the leaching rate of Fe and weight loss could reach 94.85% and 48.89% respectively. The leaching process of cyanided tailings by Mn2+/O3 was analyzed, and it was found that the leaching of pyrite depends on synergetic oxidation by high-valent manganese and O3, in which the former played an important part.
基金financially supported by the National Natural Science Foundation of China(No.52274348)the Major projects for the“Revealed Top”Science and Technology of Liaoning Province,China(No.2022JH1/10400024)the National Key Research and Development Program of China(No.2018YFC1902002).
文摘The toxic cyanides in cyanide residues produced from cyanidation process for gold extraction are harmful to the environment.Pyrite is one of the main minerals existing in cyanide residues.In this work,the interaction of cyanide with pyrite and the decyanation of pyrite cyanide residue were analyzed.Results revealed that high pH value,high cyanide concentration,and high pyrite dosage promoted the interaction of cyanide with pyrite.The cyanidation of pyrite was pseudo-second-order with respect to cyanide.The decyanation of pyrite cyanide residue by Na_(2)SO_(3)/air oxidation was performed.The cyanide removal efficiency was 83.9% after 1 h of reaction time under the optimal conditions of pH value of 11.2,SO_(3)^(2-) dosage of 22 mg·g^(-1),and air flow rate of 1.46 L·min^(-1).X-ray photoelectron spectroscopy analysis of the pyrite samples showed the formation of Fe(Ⅲ)and FeSO_(4) during the cyanidation process.The cyanide that adsorbed on the pyrite surface after cyanidation mainly existed in the forms of free cyanide(CN^(-))and ferrocyanide(Fe(CN)_(6)^(4-)),which were effectively removed by Na_(2)SO_(3)/air oxidation.During the decyanation process,air intake promoted pyrite oxidation and weakened cyanide adsorption on the pyrite surface.This study has practical significance for gold enterprises aiming to mitigate the environmental impact related to cyanide residues.
文摘Cyanide poisoning is one of the most dangerous poisonings, and it can be absorbed into the body through the mouth, inhalation and through the skin. A 32-year-old female patient was admitted to our poison control center because of high fever, severe vomiting, and seizures. Physical examination found that the patient was drowsy, had a high fever of 40 degrees Celsius, pulse of 140 beats/minute, and increased tendon and bone reflexes. Exploiting the patient’s information, it was discovered that the patient bought Cyanide to drink with the intention of committing suicide. The patient was quickly treated with gastric lavage and activated charcoal. Echocardiography recorded EF: 35%, reduced movement of the entire myocardium. CK blood test: 4562 U/L. The patient’s condition rapidly deteriorated and the patient was made ECMO, IHD and CVVHDF. After 3 days of treatment, the patient’s condition did not improve, so the family asked for the patient to go home. This article aims to describe the rapidly progressing and severe damage to the heart and muscles of patients with cyanide poisoning.
文摘The optimization system, which was the subject of our study, is an autonomous chain for the automatic management of cyanide consumption. It is in the phase of industrial automation which made it possible to use the machines in order to reduce the workload of the worker while keeping a high productivity and a quality in great demand. Furthermore, the use of cyanide in leaching tanks is a necessity in the gold recovery process. This consumption of cyanide must be optimal in these tanks in order to have a good recovery while controlling the concentration of cyanide. Cyanide is one of the most expensive products for mining companies. On a completely different note, we see huge variations during the addition of cyanide. Following a recommendation from the metallurgical and operations teams, the control team carried out an analysis of the problem while proposing a solution to reduce the variability around plus or minus 10% of the addition setpoint through automation. It should be noted that this automatic optimization by monitoring the concentration of cyanide, made use of industrial automation which is a technique which ensures the operation of the ore processing chain without human intervention. In other words, it made it possible to substitute a machine for man. So, this leads us to conduct a study on concentration levels in the real world. The results show that the analysis of the modeling of the cyanide consumption optimization system is an appropriate solution to eradicate failures in the mineral processing chain. The trend curves demonstrate this resolution perfectly.
文摘Background: Cassava tuber crop is a staple food rich in carbohydrates and utilized in various forms by millions of Nigerians. The storage root of the cassava contains linamarin, a cyanogenic glycoside that is easily hydrolyzed to release cyanide salt compounds which is toxic to the nervous system especially the optic nerve, sometimes leading to optic neuropathy and visual impairment. Aim: The aim of this study is to find out the impact of selected processing methods of high-level cyanide in cassava on optic neuropathy in Wistar albino rats. Methodology: Twenty-four Wistar albino rats were fed with different concentration and duration of predetermined high-cyanide content cassava root cultivar which was processed using different processing methods adopted by various communities in Rivers State, Nigeria (for human consumption). A control group of 3 Wistar albino rats was fed with normal “Growth Mesh” meals. The pre and post weights of the animals and the fundoscopic optic nerve status of the rats were evaluated after 30 and 60 days. SPSS Version 25 was employed for descriptive and inferential statistical analyses. A p-value of ≤0.05 was considered statistically significant. Results: The Cassava species available in Rivers State have high cyanide content (2336.79 mg CN<sup>-</sup>/kg dry weight of cassava). There was statistically significant reduction in the cyanide content (p = 0.000) depending on the various common processing methods (into garri for human consumption): 24 hours, 48 hours, fermentation;with and without red palm oil additive. The individual weights as well as the mean weight of the 24 rats in the experimental group increased gradually from the first week to the 9<sup>th</sup> week with a slight weight reduction on the third and fourth weeks which was not statistically significant (p = 0.092). However, there was a steady increase in the weights of the animals in the control group throughout the 9 weeks. Varying degrees of optic neuropathy occurred, worse with the rats that had 24-hour fermented cassava twice daily for 60 days. The intra and inter group differences in the optic disc changes was statistically significant (p = 0.000). Conclusion: Longer duration of processing cassava roots into garri for human consumption reduces its cyanide content and minimizes the adverse impact on the optic nerve.
基金Projects(ZR2010EL006,Y2007F60) supported by the National Science Foundation of Shandong Province of ChinaProject(J12LA04) supported by High Education Science Technology Program of Shandong Province,China
文摘Pretreatment of high content of Si- and Al-containing cyanide tailings by water leaching to remove some impurities, such as the major impurities minerals of Si and A1, as well as its effect on Fe extraction in the water leaching process was investigated. The effects of different parameters on iron recovery were studied, and the reaction parameters were proposed as follows: sodium carbonate content of 30%, water leaching at 60 ~C for 5 min, liquid/solid ratio of 15:1, and exciting current of 2 A. Under these optimal conditions, magnetic concentrate containing 59.11% total iron and a total iron recovery rate of 76.12% was obtained. In addition, the microstructure and phase transformation of the process of water leaching were studied by X-ray powder diffraction technique (XRD), Electronic image of backscattering (BEI), X-ray fluorescence (XRF), and energy dispersive spectrometry (EDS). The results indicate that the soluble compound impurities generated in the roasting process are washed out, and the dissoluble substances enter into nonmagnetic materials by water leaching, realizing the effective separation of impurities and Fe.
基金This work was supported by the National Key Basic Research Special Foundation (No.2007CB815202 and No.2009CB220010) and the National Natural Science Foundation of China (No.20833008).
文摘The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino- 3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysieal properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.
基金supported by the grant of the Basic Research Program of the Korea Science & Engineering Foundation (No R01-2006-000-10284-0)
文摘Ferrate(VI) was employed for the oxidation of cyanide (CN) and simultaneous removal of copper or nickel in the mixed/complexed systems of CN-Cu, CN-Ni, or CN-Cu-Ni. The degradation of CN (1.00 mmol/L) and removal of Cu (0.095 mmol/L) were investigated as a function of Fe(Ⅵ) doses from 0.3-2.00 mmol/L at pH 10.0. It was found that Fe(Ⅵ) could readily oxidize CN and the reduction of Fe(Ⅵ) into Fe(Ⅲ) might serve efficiently for the removal of free copper ions. The increase in Fe(Ⅵ) dose apparently favoured the CN oxidation as well as Cu removal. Moreover, the pH dependence study (pH 10.0-13.0) revealed that the oxidation of CN was almost unaffected in the studied pH range (10.0-13.0), however, the maximum removal efficiency of Cu was obtained at pH 13.0. Similarly, treatment was carded out for CN-Ni system having the initial Ni concentration of 0.170 mmol/L and CN concentration of 1.00 mmol with Fe(Ⅵ) dose 2.00 mmol at various pH values (10.0-12.0). Results showed a partial oxidation of CN and partial removal of Ni. It can be observed that Fe(Ⅵ) can partially degrade the CN-Ni complex in this pH range. Further, Fe(Ⅵ) was applied for the treatment of simulated industrial waste/effluent waters treatment containing CN, Cu, and Ni.
基金The Scientific and Technological Research Council of Turkey (TUBITAK) for providing financial support via a S&T research project (Project No. 213M492)
文摘The treatment of a copper sulphide-bearing gold ore by direct cyanide leaching, ammonia pretreatment and ammoniacal cyanide leaching was investigated. Dissolution behaviour of gold and copper in these leaching systems was demonstrated. Severe interference by the copper containing sulphides with cyanide leaching of gold is observed at p(NaCN)〈5 g/L. This is consistent with speciation calculations. Ammonia pretreatment is shown to readily eliminate the copper interference, allowing almost complete extraction of gold with concomitantly low reagent consumption in subsequent cyanide leaching. In ammoniacal cyanide system, Box-Behnken experimental design shows the main and interaction effects of NH3, NaCN and Pb(NO3)2. The concentrations of NH3 and NaCN are statistically confirmed to be significant factors affecting extraction of gold while the effect of Pb(NO3)2 is limited. Increasing the concentration of NH3 improves the selectivity and extent of gold extraction and reduces the cyanide consumption. The contribution of reagent interactions to gold extraction is statistically insignificant. These findings highlight that ammonia pretreatment and ammonia-cyanide leaching are promising approaches for the treatment of gold ores with high copper sulphide content.
基金Project(51764045)supported by the National Natural Science Foundation of ChinaProject(NJYT-18-B08)supported by Inner Mongolia Young Science&Technology Talent Support Plan,China+1 种基金Project(GK-201804)supported by Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProject(DD20190574)supported by China Geological Survey Project
文摘The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.
基金Project(2019YFC1908400)supported by the National Key Research and Development Program of ChinaProject(2018BDE02050)supported by the Key Research and Development Program of Ningxia Hui Autonomous Region,China+1 种基金Project(2302018FRF-TP-18-095A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2018-XY-14)supported by the Special Funds for Scientific and Technological Consultation of Academicians,China。
文摘Spent pot lining(SPL) from aluminum reduction cells is considered to be hazardous materials due to containing a large amount of soluble fluoride salts and trace toxic cyanides. The distribution of fluorides and cyanide in a 350 kA cell operated for 2396 days was analyzed and the footprint and corrosion mechanism of the harmful substances in SPL were also studied. It is found that the fluorides are mainly concentrated in the cathode carbon block and the layer of dry barrier under the cathodes, which is closely related to permeability of the cathodes and dry barrier the fluorides penetrate in. Cyanide has a low concentration in the cell center and a high concentration in the sidewall, which is positively related to the air amount entering into the areas in the cells.
文摘Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baical- ensis Georgi at concentrations of 18.98, 37.36, and 75.92 gg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive pro- duction of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na+-K*-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase disorders induced by potassium cyanide.
文摘The use of the guanidine extractant LIX 7950 extracting copper and cyanide from alkaline cyanide solution was investigated.The extraction of copper and cyanide under different initial copper and extractant concentrations was examined and the stoichiometric extraction constant of Cu(CN)32- with LIX 7950 was calculated.Both the distribution coefficient and the stoichiometric extraction constant of Cu(CN)3 2-with LIX 7950 decrease when the temperature is varied from 25℃to 45℃, indicating the extraction process is exothermic.The calculated enthalpy change of the reaction(-HΘ)is about-190 kJ/mol.The copper extraction isotherms under different molar ratios of cyanide to copper are established.The preferential extraction of Cu(CN)32- over Cu(CN)4 3-and CN -has been confirmed and a high cyanide-to-copper molar ratio tends to suppress copper loading. The loaded copper and cyanide can be stripped efficiently by the moderately strong NaOH solutions(0.5-1.0 mol/L)and the presence of NaCN in the stripping solution facilitates copper stripping.
基金Project(2012BAB08B03)supported by the National Key Technologies R&D Program of China
文摘Adsorbing tests between CN? and chalcopyrite or galena were conducted firstly, and then flotation tests of the twocyaniding minerals were investigated in butyl xanthate (BX) system. Results showed that the interaction between CN? and the twomineral surfaces were both chemical adsorption and can be described by the Langmuir adsorption isotherm model. In the optimumcondition of pH 6.5 and 4.0 mg/L BX, the recovery of cyaniding chalcopyrite and galena reached 82.1% and 63.9%, respectively. BXimproved the hydrophobicity of the surfaces of the two minerals, although CN? reduced the contact angle on the surface of minerals.The inhibitory effect of CN? on chalcopyrite far outweighed galena. Electrostatic adsorption exists in the interaction between BX andthe surface of galena after cyanide treatment in the pH range of 4.2?8.4, while the interactions between BX and the surface ofchalcopyrite after cyanide treatment is chemical adsorption.
基金financial supports from the National Key R&D Program of China (2018YFC0604604)the National Natural Science Foundation of China-Yunnan Joint Fund (U1702252)+1 种基金the Fundamental Research Funds for Central Universities of China (N182506003)the Key Scientific Research Project of Liaoning Province,China (2019JH2/10300051)。
文摘Efficient destruction of cyanide by thermal decomposition with ferric oxide addition was proposed. The mechanism of destruction of sodium cyanide with or without ferric oxide addition under various conditions was examined by XRD, DSC-TG, and chemical analysis technologies. In the absence of ferric oxide, sodium cyanide decomposes at 587.4 ℃ in air and 879.2 ℃ in argon atmosphere. In the presence of ferric oxide, about 60% of sodium cyanide decomposes at 350 ℃ for 30 min in argon, while almost all sodium cyanide decomposes within 30 min in air or O2 with mass ratio of ferric oxide to sodium cyanide of 1:1. The increase of ferric oxide addition, temperature, and heating time facilitates the destruction of sodium cyanide. It is believed that with ferric oxide addition, NaCN reacts with Fe2O3 to form Na4Fe(CN)6, Na2CO3, NaNO2 and Fe3O4 in argon. NaCN decomposes into NaCNO, Na4Fe(CN)6, minor NaNO2, and the formed NaCNO and Na4Fe(CN)6 further decompose into Na2CO3, CO2, N2, FeOx, and minor NOx in air or O2.
基金Project(201552)supported by the Special Project on the Strategic Emerging Industries of Xinjiang Uygur Autonomous Region,ChinaProject(2017SK2254)supported by the Key Research and Development Project of Hunan Province,China。
文摘Differences of cyanide leaching between the calcine and the dust from a refractory gold concentrate were investigated by comparative method. Results showed that gold leaching efficiencies of the calcine and the dust were 85.31% and 54.30%, respectively, with direct cyanidation. Contents and existing forms of arsenic and carbon were the main reasons for those differences. The maximum gold leaching efficiencies of the calcine and the dust were 87.70% and 58.60%, respectively, with cyanidation after NaOH pre-leaching. Harmful elements removal, gold loss in NaOH pre-leaching and iron oxides hindrance codetermined gold leaching efficiencies of the calcine and the dust. After H2SO4 pre-leaching, the maximum gold leaching efficiencies of the calcine and the dust achieved 94.96% and 80.40%, respectively. The effect of carbonaceous matter was the main reason for differences for leaching efficiencies of the calcine and the dust. Based on those differences, two proper gold extraction processes were put forward, and gold leaching efficiencies for the calcine and the dust achieved 94.91% and 91.90%, respectively.
基金Project(50725416) supported by the National Science Fund for Distinguished Young Scholars,China
文摘The effects of mercury ions on gold cyanidation were studied. The results show that under low cyanide concentration, gold cyanide process is controlled by CN- transfer, while at higher cyanide concentration, there forms passivation on gold surface. Therefore, chemical oxidation of gold in cyanide solution of higher concentration is controlled by surface reaction. Small quantity of additions of mercury ions bring about great increases in anodic gold dissolution rate, decreases the passivation and reduces the equilibrium activated energy. In addition, they also markedly change the effect pattern of cyanide concentration. Mercury ions show positive effects on cathodic reduction of oxygen and raise the rate of electrochemical step of the cathodic reduction of oxygen. Addition of a certain amount of hydrogen peroxide is confirmed to be an effective way for intensification of cathodic process on gold electrode. Active potential range and current peak on anodic dissolution are enlarged when being co-intensified with Hg^2+ and hydrogen peroxide. Co-intensifying effect may be obtained and gold from gold concentrates. gold leaching rate is considerably increased on cyanide leaching of
基金Project(50725416) supported by the National Natural Science Foundation for Distinguished Young Scholars of China
文摘Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide assistant leaching on three different types of materials which were classified as a refractory sulphide gold concentrate,an easily leachable sulphide gold concentrate,and a low grade oxide gold ore according to their leaching characteristics.The results showed that,favorable co-intensification effects on the three materials were obtained and leaching time of gold was effectively shortened to no longer than 12 h from 16 to 24 h for hydrogen peroxide assistant leaching.For the five tested heavy metal ions,Bi3+and Tl+ presented co-intensifying effect on all the three materials,and Hg2+ caused co-intensifying effect on both refractory and easily leachable sulphide gold concentrates,and Pb2+ and Ag+ only had co-intensifying effect on the easily leachable sulphide gold concentrate.
基金financially supported by the National Key R&D Program of China(No.2018YFC1902002)the Special Fund for the National Natural Science Foundation of China(No.U1608254)。
文摘Because of the highly toxic cyanide in the gold cyanide residues,cyanide must be removed for environmental protection.The process mineralogy of residues was studied firstly,and then cyanide removal was carried out by three chemical methods.The results showed that the residue mainly contained Si,S and Fe.Pyrite was the main metallic mineral,and the iron-complex cyanides make cyanide removal difficult.The minerals in residues were in ultrafine particle size with high monomer dissociation degrees.In H_(2)O_(2)oxidation process,the self-decomposition and side reactions resulted in high consumption of H_(2)O_(2).In Na_(2)S_(2)O_(5)-air oxidation process,the time for complete process was long because of the reactions between Na_(2)S_(2)O_(5)and O_(2).Na_(2)SO_(3)oxidation method was found to be a new method for cyanide removal without air inflation device.The cyanide content was reduced to the national standard level in 90 min at pH 9.0 with optimum Na_(2)SO_(3)dose of 2.0 g/L.
文摘The effects of cyanidation conditions on gold dissolution were studied by artificial neural network (ANN) modeling. Eighty-five datasets were used to estimate the gold dissolution. Six input parameters, time, solid percentage, P50 of particle, NaCN content in cyanide media, temperature of solution and pH value were used. For selecting the best model, the outputs of models were compared with measured data. A fourth-layer ANN is found to be optimum with architecture of twenty, fifteen, ten and five neurons in the first, second, third and fourth hidden layers, respectively, and one neuron in output layer. The results of artificial neural network show that the square correlation coefficients (R2) of training, testing and validating data achieve 0.999 1, 0.996 4 and 0.9981, respectively. Sensitivity analysis shows that the highest and lowest effects on the gold dissolution rise from time and pH, respectively It is verified that the predicted values of ANN coincide well with the experimental results.