Mesoporous titanium containing alumino-silicate materials with various titanium/silicon(Ti/Si) ratio(AlSi-Ti(n);n = Ti/Si mole ratio) have been successfully synthesized by a novel single-step sodium(Na)-free method, f...Mesoporous titanium containing alumino-silicate materials with various titanium/silicon(Ti/Si) ratio(AlSi-Ti(n);n = Ti/Si mole ratio) have been successfully synthesized by a novel single-step sodium(Na)-free method, for the first time. The obtained characterization results of the prepared materials reveal that in-situ addition of Ti into AlSi shows ordered mesoporous structure along with uniformly dispersed Ti species in +4 and +3 oxidation states suitable for selective oxidation of allylic C—H bond. The prepared mesoporouse Ti-AlSi(n) samples exhibited excellent activity in the oxidation of cyclohexene with 100%conversion and 100% selectivity to ketone-alcohol(KA) oil(cyclohex-2-en-1-ol and 2-cyclohexen-1-one) at low temperature and reaction time(35℃ and 30 min reaction time). This study suggests that AlSi-Ti(0.05) material can be a promising catalyst for the selective oxidation of cyclohexene under mild reaction conditions.展开更多
A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spe...A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and elemental analysis, which showed that it was an amorphous carbon material composed of aromatic carbon sheets in random orientations. Sulfonic acid groups were present on the surface at a density of 0.81 mmol/g. The carbon solid acid catalyst showed better performance than HZSM‐5 for the esterification of cyclohexene with formic acid. At a3:1 molar ratio of formic acid to cyclohexene, catalyst loading of 0.07 g/mL of cyclohexene, and reaction time of 1 h at 413 K, the cyclohexene conversion was 88.4% with 97.3% selectivity to cyclohexyl formate. The carbon solid acid catalyst showed better reusability than HZSM‐5 because its large pores were minimally affected by the accumulation of oligomerized cyclohexene, which deactivated HZSM‐5. The activity of the carbon solid acid catalyst decreased somewhat in the first two recycles due to the leaching of polycyclic aromatic hydrocarbon containing –SO3H groups and then it remained constant in the following reuse.展开更多
Oxidation of cyclohexene under 1 atmospheric pressure of molecular oxygen at 70C in the absence of solvent catalyzed by PAMAM-SA-M (Where PAMAM = polyamidoamine; SA = salicyaldehyde; M = metal ions Fe3+, Co2+, Ni2+, M...Oxidation of cyclohexene under 1 atmospheric pressure of molecular oxygen at 70C in the absence of solvent catalyzed by PAMAM-SA-M (Where PAMAM = polyamidoamine; SA = salicyaldehyde; M = metal ions Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Zn2+, respectively) dendrimers, afforded 2-cyclohexen-1-ol 1, 2-cyclohexen-1-one 2, 7-oxabicyclo [4,1,0] heptane 3 and 7-oxabicyl [4,1,0] heptan-2-one 4 as the major products. The factors that affect this reaction are also discussed.展开更多
A new compound, subglain B, was isolated from the stems of Uvaria tonkinensis var. subglabra and its structure was identified as 1S, 2R, 3S, 6R-1-benzoyloxymethylene-1,2- dihydroxy-3-benzoyloxy-6-chlorocyclohex-4-ene ...A new compound, subglain B, was isolated from the stems of Uvaria tonkinensis var. subglabra and its structure was identified as 1S, 2R, 3S, 6R-1-benzoyloxymethylene-1,2- dihydroxy-3-benzoyloxy-6-chlorocyclohex-4-ene (1), by spectral evidences.展开更多
Three new cyclohexene epoxides,polysyphoside A,B and C,along with a known compound crotepoxide(4),were isolated from Piper polysyphorum C.DC.Based on spectroscopic analysis,their structures were established as 1-benzo...Three new cyclohexene epoxides,polysyphoside A,B and C,along with a known compound crotepoxide(4),were isolated from Piper polysyphorum C.DC.Based on spectroscopic analysis,their structures were established as 1-benzoyloxymethylene-2-hydroxy-3-benzoyloxy-1,6- epoxycyclohex-4-ene(1),1-benzoyloxymethylene-2-hydroxy-5-benzoyloxy-1,6-epoxycyclohex-3-ene (2)and 2-hydroxy-3-benzoyloxymethylene-5-benzoyloxy-1,6-epoxycyclohex-3-ene(3),respectively.It was the first time that(1),(2)and(3)had been isolated from a natural source.展开更多
Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were character...Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra (IR), small area X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectro (ICP-AES). In the presence of complex, cyclohexane can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 2-cyclohexen-1-hydroperoxide, which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed.展开更多
A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize ...A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize and the amorphous character as well as to its textural character. In addition, the concentration of zinc ions, the content of ZrO2 in the slurry, and the pretreatment of the catalyst were found to be effective in improving the activity and the selectivity of the catalyst.展开更多
Ru-based catalysts promoted with Mn and Zn were prepared by a co-precipitation method. In liquid-phase hydrogenation of benzene, the Ru-Mn-Zn catalysts exhibited superior catalytic performance to the catalysts promote...Ru-based catalysts promoted with Mn and Zn were prepared by a co-precipitation method. In liquid-phase hydrogenation of benzene, the Ru-Mn-Zn catalysts exhibited superior catalytic performance to the catalysts promoted with Zn or Mn alone. The optimum Mn/Zn molar ratio was determined to be 0.3. With the addition of 0.5 g NaOH, the Ru-Mn-Zn-0.3 catalyst, which was reduced at 150 ? C, afforded a cyclohexene selectivity of 81.1% at a benzene conversion of 60.2% at 5 min and a maximum cyclohexene yield of 59.9% at 20 min. Based on characterizations, the excellent performance of Ru-Mn-Zn catalyst was ascribed to the suitable pore structure, the appropriate reducibility and the homogenous chemical environment of the catalyst.展开更多
Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-ge...Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.展开更多
Ru-Ce catalysts were prepared by a co-precipitation method.The effects of Ce precursors with different valences and Ce contents on the catalytic performance of Ru-Ce catalysts were investigated in the presence of ZnSO...Ru-Ce catalysts were prepared by a co-precipitation method.The effects of Ce precursors with different valences and Ce contents on the catalytic performance of Ru-Ce catalysts were investigated in the presence of ZnSO4.The Ce species in the catalysts prepared with different valences of the Ce precursors all exist as CeO2 on the Ru surface.The promoter CeO2alone could not improve the selectivity to cyclohexene of Ru catalysts.However,almost all the CeO2 in the catalysts could react with the reaction modifier ZnSO4 to form(Zn(OH)2)3(ZnSO4)(H2O)3 salt.The amount of the chemisorbed salt increased with the CeO2 loading,resulting in the decrease of the activity and the increase of the selectivity to cyclohexene of Ru catalyst.The Ru-Ce catalyst with the optimum Ce/Ru molar ratio of 0.19 gave a maximum cyclohexene yield of 57.4%.Moreover,this catalyst had good stability and excellent reusability.展开更多
Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sul...Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sulfuric acid.The swelling ability of acidic PILs was greatly affected by cross-linker content and chain length of 3-alkyl-substituents on imidazolium.Cross-linked network structures could be observed from the cryogenic scanning electron microscopy(cryo-SEM)images of the swollen acidic PILs in formic acid.Acidic PILs with network structures in swollen state exhibited excellent activities in the esterification of cyclohexene and formic acid,and the catalytic activities were in positive correlation with their swelling abilities.Acidic PIL with 3-octyl-substituent and 2.5 mol%DVB(PIL-C8-2.5DVB-HSO4)had the highest swelling ability in formic acid and exhibited comparable catalytic activities with homogeneous catalysts such as sulfuric acid and p-toluenesulfonic acid.展开更多
Oxygenation constants and thermodynamic parameters DeltaH degrees and DeltaS degrees of cobalt (II) complexes with bis-(furaldehyde) Schiff bases (1, 2, 3, 4)were obtained by mearsuring saturated dioxygen uptake of th...Oxygenation constants and thermodynamic parameters DeltaH degrees and DeltaS degrees of cobalt (II) complexes with bis-(furaldehyde) Schiff bases (1, 2, 3, 4)were obtained by mearsuring saturated dioxygen uptake of these complexes in pyridine at different temperature. These complexes could activate molecular oxygen and were used as catalysts in cyclohexene oxidation. The influence of ligand structure on the dioxygen affinity and catalytic activity of the complexes were discussed.展开更多
文摘Mesoporous titanium containing alumino-silicate materials with various titanium/silicon(Ti/Si) ratio(AlSi-Ti(n);n = Ti/Si mole ratio) have been successfully synthesized by a novel single-step sodium(Na)-free method, for the first time. The obtained characterization results of the prepared materials reveal that in-situ addition of Ti into AlSi shows ordered mesoporous structure along with uniformly dispersed Ti species in +4 and +3 oxidation states suitable for selective oxidation of allylic C—H bond. The prepared mesoporouse Ti-AlSi(n) samples exhibited excellent activity in the oxidation of cyclohexene with 100%conversion and 100% selectivity to ketone-alcohol(KA) oil(cyclohex-2-en-1-ol and 2-cyclohexen-1-one) at low temperature and reaction time(35℃ and 30 min reaction time). This study suggests that AlSi-Ti(0.05) material can be a promising catalyst for the selective oxidation of cyclohexene under mild reaction conditions.
基金supported by the National Natural Science Foundation of China(2123600121176056)+1 种基金the Programme for 100 Excellent Talents in Universities of Hebei Province(II)(BR2-208)the Natural Science Foundation of Hebei Province(B2015202228)~~
文摘A carbon solid acid catalyst was prepared by the sulfonation of partially carbonized peanut shell with concentrated H2SO4. The structure and acidity of the catalyst were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and elemental analysis, which showed that it was an amorphous carbon material composed of aromatic carbon sheets in random orientations. Sulfonic acid groups were present on the surface at a density of 0.81 mmol/g. The carbon solid acid catalyst showed better performance than HZSM‐5 for the esterification of cyclohexene with formic acid. At a3:1 molar ratio of formic acid to cyclohexene, catalyst loading of 0.07 g/mL of cyclohexene, and reaction time of 1 h at 413 K, the cyclohexene conversion was 88.4% with 97.3% selectivity to cyclohexyl formate. The carbon solid acid catalyst showed better reusability than HZSM‐5 because its large pores were minimally affected by the accumulation of oligomerized cyclohexene, which deactivated HZSM‐5. The activity of the carbon solid acid catalyst decreased somewhat in the first two recycles due to the leaching of polycyclic aromatic hydrocarbon containing –SO3H groups and then it remained constant in the following reuse.
文摘Oxidation of cyclohexene under 1 atmospheric pressure of molecular oxygen at 70C in the absence of solvent catalyzed by PAMAM-SA-M (Where PAMAM = polyamidoamine; SA = salicyaldehyde; M = metal ions Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Zn2+, respectively) dendrimers, afforded 2-cyclohexen-1-ol 1, 2-cyclohexen-1-one 2, 7-oxabicyclo [4,1,0] heptane 3 and 7-oxabicyl [4,1,0] heptan-2-one 4 as the major products. The factors that affect this reaction are also discussed.
基金the National Natural Science Foundation of China(No.39970084)the Chinese Doctoral Grants of the Ministry of Science and Technology of China(No.96-901-96-54)for financial support
文摘A new compound, subglain B, was isolated from the stems of Uvaria tonkinensis var. subglabra and its structure was identified as 1S, 2R, 3S, 6R-1-benzoyloxymethylene-1,2- dihydroxy-3-benzoyloxy-6-chlorocyclohex-4-ene (1), by spectral evidences.
文摘Three new cyclohexene epoxides,polysyphoside A,B and C,along with a known compound crotepoxide(4),were isolated from Piper polysyphorum C.DC.Based on spectroscopic analysis,their structures were established as 1-benzoyloxymethylene-2-hydroxy-3-benzoyloxy-1,6- epoxycyclohex-4-ene(1),1-benzoyloxymethylene-2-hydroxy-5-benzoyloxy-1,6-epoxycyclohex-3-ene (2)and 2-hydroxy-3-benzoyloxymethylene-5-benzoyloxy-1,6-epoxycyclohex-3-ene(3),respectively.It was the first time that(1),(2)and(3)had been isolated from a natural source.
基金The National Natural Science Foundation of China(20274034)
文摘Polymer-bound Schiff-base ligand (PS-Sal-Cys) was prepared from the polystyrene-bound salicylaldehyde and L-cysteine, its complex (PS-Sal-Cys-Mn) was also synthesized. The polymer ligand and its complex were characterized by infrared spectra (IR), small area X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-atomic emission spectro (ICP-AES). In the presence of complex, cyclohexane can be effectively oxidized by molecular oxygen without a reductant. The major products of the reaction are 2-cyclohexen-1-ol, 2-cyclohexen-1-one, and 2-cyclohexen-1-hydroperoxide, which is different from the typical oxidation of cyclohexene. The mechanism of cyclohexene oxidation is also discussed.
文摘A novel nanosized amorphous Ru-Fe-B/ZrO2 alloy catalyst for benzene selective hydrogenation to cyclohexene was investigated. The superior properties of this catalyst were attributed to the combination of the nanosize and the amorphous character as well as to its textural character. In addition, the concentration of zinc ions, the content of ZrO2 in the slurry, and the pretreatment of the catalyst were found to be effective in improving the activity and the selectivity of the catalyst.
文摘Ru-based catalysts promoted with Mn and Zn were prepared by a co-precipitation method. In liquid-phase hydrogenation of benzene, the Ru-Mn-Zn catalysts exhibited superior catalytic performance to the catalysts promoted with Zn or Mn alone. The optimum Mn/Zn molar ratio was determined to be 0.3. With the addition of 0.5 g NaOH, the Ru-Mn-Zn-0.3 catalyst, which was reduced at 150 ? C, afforded a cyclohexene selectivity of 81.1% at a benzene conversion of 60.2% at 5 min and a maximum cyclohexene yield of 59.9% at 20 min. Based on characterizations, the excellent performance of Ru-Mn-Zn catalyst was ascribed to the suitable pore structure, the appropriate reducibility and the homogenous chemical environment of the catalyst.
基金Supported by Qinglan Project Foundation of Jiangsu Province and Doctoral Dissertation Innovate Foundation of Nanjing Uni-versity of Technology (No.BSCS200508).
文摘Epoxidation of cyclohexene to cyclohexene oxide was studied in a new type reactor—the ultrasound airlift loop reactor. The influences of ultrasound intensity, molar ratio of isobutyraldehyde to cyclohexene and oxy-gen gas flow rate on the conversion of cyclohexene and selectivity of cyclohexene oxide were investigated and dis-cussed, and the optimal operation condition was found, under which 95.2% conversion of cyclohexene and 90.7% selectivity of cyclohexene oxide were achieved. The ultrasonic airlift loop reactor utilizes the synergistic effect of sonochemsitry and higher oxygen transfer rate. Possible reaction mechanisms were outlined and the reason of ul-trasound promotion of epoxidation reactionwas analyzed.
基金supported by the National Nature Science Foundation of China(21273205)the Innovation Found for Technology Based Firms of China(10C26214104505)+1 种基金the Chinese Post-doctorate Science Fund 51th batch of surface subsidizes(2012M511125)the Scientific Research Foundation of Graduate School of Zhengzhou University
文摘Ru-Ce catalysts were prepared by a co-precipitation method.The effects of Ce precursors with different valences and Ce contents on the catalytic performance of Ru-Ce catalysts were investigated in the presence of ZnSO4.The Ce species in the catalysts prepared with different valences of the Ce precursors all exist as CeO2 on the Ru surface.The promoter CeO2alone could not improve the selectivity to cyclohexene of Ru catalysts.However,almost all the CeO2 in the catalysts could react with the reaction modifier ZnSO4 to form(Zn(OH)2)3(ZnSO4)(H2O)3 salt.The amount of the chemisorbed salt increased with the CeO2 loading,resulting in the decrease of the activity and the increase of the selectivity to cyclohexene of Ru catalyst.The Ru-Ce catalyst with the optimum Ce/Ru molar ratio of 0.19 gave a maximum cyclohexene yield of 57.4%.Moreover,this catalyst had good stability and excellent reusability.
基金This work was supported by the National Natural Science Foundation of China(21773068,21811530273,21573072)the National Key Research and Development Program of China(2017YFA0403102)Shanghai Leading Academic Discipline Project(B409).
文摘Acidic poly(ionic liquid)s(PILs)with swelling ability were synthesized by free radical copolymerization of N-vinylimidazolium ionic liquids,divinylbenzene(DVB)and sodium acrylate(NaAA),and further acidification by sulfuric acid.The swelling ability of acidic PILs was greatly affected by cross-linker content and chain length of 3-alkyl-substituents on imidazolium.Cross-linked network structures could be observed from the cryogenic scanning electron microscopy(cryo-SEM)images of the swollen acidic PILs in formic acid.Acidic PILs with network structures in swollen state exhibited excellent activities in the esterification of cyclohexene and formic acid,and the catalytic activities were in positive correlation with their swelling abilities.Acidic PIL with 3-octyl-substituent and 2.5 mol%DVB(PIL-C8-2.5DVB-HSO4)had the highest swelling ability in formic acid and exhibited comparable catalytic activities with homogeneous catalysts such as sulfuric acid and p-toluenesulfonic acid.
文摘Oxygenation constants and thermodynamic parameters DeltaH degrees and DeltaS degrees of cobalt (II) complexes with bis-(furaldehyde) Schiff bases (1, 2, 3, 4)were obtained by mearsuring saturated dioxygen uptake of these complexes in pyridine at different temperature. These complexes could activate molecular oxygen and were used as catalysts in cyclohexene oxidation. The influence of ligand structure on the dioxygen affinity and catalytic activity of the complexes were discussed.