期刊文献+
共找到158篇文章
< 1 2 8 >
每页显示 20 50 100
Vibration of black phosphorus nanotubes via orthotropic cylindrical shell model
1
作者 Minglei He Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期166-173,共8页
Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingopti... Black phosphorus nanotubes(BPNTs)may have good properties and potential applications.Determining thevibration property of BPNTs is essential for gaining insight into the mechanical behaviour of BPNTs and designingoptimized nanodevices.In this paper,the mechanical behaviour and vibration property of BPNTs are studied viaorthotropic cylindrical shell model and molecular dynamics(MD)simulation.The vibration frequencies of twochiral BPNTs are analysed systematically.According to the results of MD calculations,it is revealed that thenatural frequencies of two BPNTs with approximately equal sizes are unequal at each order,and that the naturalfrequencies of armchair BPNTs are higher than those of zigzag BPNTs.In addition,an armchair BPNTs witha stable structure is considered as the object of research,and the vibration frequencies of BPNTs of differentsizes are analysed.When comparing the MD results,it is found that both the isotropic cylindrical shell modeland orthotropic cylindrical shell model can better predict the thermal vibration of the lower order modes of thelonger BPNTs better.However,for the vibration of shorter and thinner BPNTs,the prediction of the orthotropiccylindrical shell model is obviously superior to the isotropic shell model,thereby further proving the validity ofthe shell model that considers orthotropic for BPNTs. 展开更多
关键词 Orthotropic cylindrical shell Molecular dynamics simulation Black phosphorus nanotube VIBRATION
下载PDF
Experimental Study on Full-Surface Buckling of Variable Curvature Cylindrical Shell Using Multi-camera 3D-DIC System
2
作者 LI Xin SUN Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期589-598,共10页
To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the o... To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system. 展开更多
关键词 360°3D digital image correlation(DIC) hierarchical coordinate matching method full-field 3D deformation measurement variable curvature cylindrical shell
下载PDF
Vibration and Sound Radiation of Cylindrical Shell Covered with a Skin Made of Micro Floating Raft Arrays Excited by Turbulence 被引量:1
3
作者 Dan Zhao Qiong Wu +5 位作者 Minyao Gan Ke Li Wenhong Ma Qun Wu Liqiang Dong Shaogang Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2041-2055,共15页
To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cyli... To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells. 展开更多
关键词 Finite cylindrical shell vibration and sound radiation noise reduction turbulent pulsating pressure micro floating raft
下载PDF
The semi-analytical modeling and vibration reduction analysis of the cylindrical shell with piezoelectric shunt damping patches
4
作者 Dongxu DU Jun YANG +2 位作者 Wei SUN Hongwei MA Kunpeng XU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1675-1700,共26页
By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteri... By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect. 展开更多
关键词 cylindrical shell vibration reduction analysis piezoelectric shunt semianalytical modeling experimental study
下载PDF
Numerical study on the dynamic fracture of explosively driven cylindrical shells
5
作者 Zhi-yong Yin Xiao-wei Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期154-168,共15页
Research on the expansion and fracture of explosively driven metal shells has been a key issue in weapon development and structural protection.It is important to study and predict the failure mode,fracture mechanism,a... Research on the expansion and fracture of explosively driven metal shells has been a key issue in weapon development and structural protection.It is important to study and predict the failure mode,fracture mechanism,and fragment distribution characteristics of explosively driven metal shells.In this study,we used the finite element-smoothed particle hydrodynamics(FE-SPH)adaptive method and the fluid-structure interaction method to perform a three-dimensional numerical simulation of the expansion and fracture of a metal cylindrical shell.Our method combined the advantages of the FEM and SPH,avoiding system mass loss,energy loss,and element distortion;in addition,the proposed method had a good simulation effect on the interaction between detonation waves and the cylindrical shell.The simulated detonation wave propagation,shell damage morphology,and fragment velocity distribution were in good agreement with theoretical and experimental results.We divided the fragments into three regions based on their shape characteristics.We analyzed the failure mode and formation process of fragments in different regions.The numerical results reproduced the phenomenon in which cracks initiated from the inner surface and extended to the outer surface of the cylindrical shell along the 45°or 135°shear direction.In addition,fragments composed of elements are identified,and the mass and characteristic lengths of typical fragments at a stable time are provided.Furthermore,the mass and size distribution characteristics of the fragments were explored,and the variation in the fitting results of the classical distribution function under different explosion pressures was examined.Finally,based on mathematical derivation,the distribution formula of fragment velocity was improved.The improved formula provided higher accuracy and could be used to analyze any metal cylindrical shells with different length-to-diameter ratios. 展开更多
关键词 Metal cylindrical shell Shear failure Fragment distribution Numerical simulation Fragment velocity
下载PDF
Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
6
作者 Soheil Oveissi Aazam Ghassemi +2 位作者 Mehdi Salehi S.Ali Eftekhari Saeed Ziaei-Rad 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期511-528,共18页
We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love,... We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Fl ¨ugge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates,a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain,we discuss the effects of nanoflow velocity, fluid density(nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases. 展开更多
关键词 BUCKLING nonlocal cylindrical shell model anofluid-nanostructure interaction carbon nanotubes
原文传递
Sanders' Mid-long Cylindrical Shell Theory and its Application to Ocean Engineering Structures 被引量:3
7
作者 Shutao He (1) heshutao6105@163.com Yao Zhao (1) 《Journal of Marine Science and Application》 2012年第1期98-105,共8页
The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the ... The cylindrical shell is one of the main structural parts in ocean engineering structures.These cylinders are mostly of medium length,which means that the radius of the cross section is significantly smaller than the length of the cylindrical shell.From the viewpoint of the shell theory,they belong to the mid-long cylindrical shell category.To solve mechanical problems on this kind of structure,especially a cracked cylindrical shell,analysis based on shell theory is necessary.At present the generally used solving system for the mid-long cylindrical shell is too complicated,difficult to solve,and inapplicable to engineering.This paper introduced the Sanders' mid-long cylindrical shell theory which reduces the difficulty of the solution process,and will be suitable for solving problems with complicated boundary conditions.On this basis,the engineering applications of this theory were discussed in conjunction with the problem of a mid-long cylindrical shell having a circumferential crack.The solution process is simple,and the closed form solution can usually be found.In practical engineering applications,it gives satisfactory precision. 展开更多
关键词 mid-long cylindrical shell cylindrical shell theory circumferential crack ocean engineeringstructure
下载PDF
AN APPLICATION OF THEORETICAL SOLUTIONS ABOUT CYLINDRICAL SHELLS WITH SMALL OPENINGS
8
作者 宋天舒 刘殿魁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第9期1066-1070,共5页
Stress concentrations about thin cylindrical shells with small openings are reconsidered front a nerv angle. There is a sort of special internal relation between theoretical solutions about cylindrical shells,vith lar... Stress concentrations about thin cylindrical shells with small openings are reconsidered front a nerv angle. There is a sort of special internal relation between theoretical solutions about cylindrical shells,vith large openings and one,with small openings. Using this relation, the extent of applying the theory about small openings to engineering practice is estimated again, thus an idea of how to use this theory and a nerv appraisal of the application of theoretical solutions about cylindrical shells with small openings to engineering practice are given. 展开更多
关键词 cylindrical shell with small opening cylindrical shell with large opening application to engineering practice
下载PDF
Dynamic Buckling of Elasto-Plastic Cylindrical Shells Under Axial Fluid-Solid Impact Load 被引量:9
9
作者 Gu Wangming and Chen Tieyun" Postdoctor, Department of Naval Architechture and Ocean Engineering, Shanghai Jiaotong University,Shanghai 200030 Professor, Department of Naval Architechture and Ocean Engineering, Shanghai Jiaotong University, Shanghai 200030 《China Ocean Engineering》 SCIE EI 1994年第3期237-250,共14页
The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basi... The dynamic buckling of elasto-plastic cylindrical shells under axial fluid-solid impact is investigated theoretically. A simplified liquid- gas- structure model is given to approximately imitate the problem. The basic equation of the structure is derived from a minimum principle in dynamics of elasto-plastic continua at finite deformation, and the flow theory of plasticity is employed. The liquid is incompressible and the gas is compressed adiabatically. A number of numerical results are presented and the characteristics of the buckling behavior under fluid-solid impact are illustrated. 展开更多
关键词 fluid-solid impact cylindrical shell dynamic buckling elasto-plastic buckling
下载PDF
Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields 被引量:8
10
作者 M.MOHAMMADIMEHR R.ROSTAMI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第2期219-240,共22页
The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the fir... The bending and free vibration of a rotating sandwich cylindrical shell are analyzed with the consideration of the nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields by use of the first-order shear deformation theory (FSDT) of shells. The governing equations of motion and the corresponding boundary conditions are established through the variational method and the Maxwell equation. The closed-form solutions of the rotating sandwich cylindrical shell are obtained. The effects of geometrical parameters, volume fractions of carbon nanotubes, applied voltages on the inner and outer piezoelectric layers, and magnetic and thermal fields on the natural frequency, critical angular velocity, and deflection of the sandwich cylindrical shell are investigated. The critical angular velocity of the nanocomposite sandwich cylindrical shell is obtained. The results show that the mechanical properties, e.g., Young's modulus and thermal expansion coefficient, for the carbon nanotube and matrix are functions of temperature, and the magnitude of the critical angular velocity can be adjusted by changing the applied voltage. 展开更多
关键词 free vibration BENDING rotating sandwich cylindrical shell nanocompositecore piezoelectric layer
下载PDF
Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer 被引量:7
11
作者 M.AREFI R.KARROUBI M.IRANI-RAHAGHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第7期821-834,共14页
An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear ... An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear deformation theory is used to model the electromechanical system. Nonlinear equations of motion are derived by considering the von Karman nonlinear strain-displacement relations using Hamilton's principle. The piezoelectric layers on the inner and outer surfaces of the core can be considered as a sensor and an actuator for controlling characteristic vibration of the system. The equations of motion are derived as partial differential equations and then discretized by the Navier method. Numerical simulation is performed to investigate the effect of different para- meters of material and geometry on characteristic vibration of the cylinder. The results of this study show that the natural frequency of the system decreases by increasing the non-homogeneous index of FGP layers and decreases by increasing the non-homogeneous index of the functionally graded core. Furthermore, it is concluded that by increasing the ratio of core thickness to cylinder length, the natural frequencies of the cylinder increase considerably. 展开更多
关键词 free vibration nonlinear analysis frequency analysis cylindrical shell functionally graded material (FGM) functionally graded piezoelectric material (FGPM)
下载PDF
Parametric Analysis of A Submerged Cylindrical Shell Subjected to Shock Waves 被引量:5
12
作者 李上明 FAN Sau-Cheong 《China Ocean Engineering》 SCIE EI 2007年第1期125-136,共12页
In this study, an FEM-SBFEM (scaled boundary finite element method) coupling procedure proposed by Fan et al. (2005) is adopted to obtain the dynamic responses of a submerged cylindrical shell subjected to plane s... In this study, an FEM-SBFEM (scaled boundary finite element method) coupling procedure proposed by Fan et al. (2005) is adopted to obtain the dynamic responses of a submerged cylindrical shell subjected to plane step or exponential acoustic shock waves. The coupling procedure can readily be applied to three-dimensional problem, however for clarity, the problems to be presented are hmited to two-dimeusional domain. In the analyses, the cylindrical shell is modeled by simple beam elements (using FEM), while the effects of the surrounding infinite fluid is modeled by the SBFEM. In it, no free surface and seabed are involved. Compared with Fan and his co-authors' works, the FEM-SBFEM coupling procedure is further verified to be feasible for shock waves by benchmark examples. Furthermore, parametric studies are performed and presented to gain insight into effects of the geometric and material properties of the cylindrical shell on its dynamic responses. 展开更多
关键词 cylindrical shell FEM-SBFEM coupling shock wave infinite fluid parametric study
下载PDF
Vibration and Acoustic Radiation from Orthogonally Stiffened Infinite Circular Cylindrical Shells in Water 被引量:5
13
作者 陈军明 黄玉盈 曾革委 《China Ocean Engineering》 SCIE EI 2002年第4期437-452,共16页
Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well a... Based on the motion differential equations of vibration and acoustic coupling system for thin elastic shells with ribs, by means of the Fourier integral transformation and the Fourier inverse transformation, as well as the stationary phase method, an analytic solution, which has satisfying computational effectiveness and precision, is derived for the solution to the vibration and acoustic radiation from a submerged stiffened infinite circular cylinder with both ring and axial ribs. It is easy to analyze the effect of stiffening supports in the acoustic radiation field by use of the formulas obtained by the presented method and corresponding numerical computation. It is shown that the axial-stiffeners can improve the mechanical and acoustical characteristics. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure. 展开更多
关键词 coupling system stiffened cylindrical shell vibration and acoustic radiation analytic solution acoustic radiation mechanism
下载PDF
Dynamic behavior of single-layer latticed cylindrical shells subjected to seismic loading 被引量:4
14
作者 沈世钊 邢佶慧 范峰 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第2期269-279,共11页
The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of singl... The single-layer latticed cylindrical shell is one of the most widely adopted space-fl'amed structures.In this paper,free vibration properties and dynamic response to horizontal and vertical seismic waves of single-layer latticed cylindrical shells are analyzed by the finite element method using ANSYS software.In the numerical study,where hundreds of cases were analyzed,the parameters considered included rise-span ratio,length-span ratio,surface load and member section size.Moreover,to better define the actual behavior of single-layer latticed shells,the study is focused on the dynamic stress response to both axial forces and bending moments.Based on the numerical results,the effects of the parameters considered on the stresses are discussed and a modified seismic force coefficient method is suggested.In addition,some advice based on these research results is presented to help in the future design of such structures. 展开更多
关键词 single-layer latticed cylindrical shell dynamic behaviors seismic force coefficient method rise-span ratio length-span ratio surface load intensity member section size
下载PDF
BUCKLING AND POSTBUCKLING OF LAMINATED THIN CYLINDRICAL SHELLS UNDER HYGROTHERMAL ENVIRONMENTS 被引量:4
15
作者 SHEN Hui-shen(沈惠申) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第3期270-281,共12页
The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The m... The influence of hygrothermal effects on the buckling and postbuckling of composite laminated cylindrical shells subjected to axial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected hy the variation of temperature and moisture, and are hosed on a micromechanical model of a laminate. The governing equations are based on the classical laminated shell theory, and including hygrothermal effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell were both taken into account. A boundary layer theory of shell buckling was extended to the case of laminated cylindrical shells under hygrothermal environments, and a singular peturbation technique was employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical shells under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, fiber volume fraction, shell geometric parameter, total number of plies, stacking sequences and initial geometric imperfections are studied. 展开更多
关键词 structural stability POSTBUCKLING hygrothermal environments composite laminated cylindrical shell a boundary layer theory of shell buckling singular perturbation technique
下载PDF
FREE VIBRATION OF PIEZOELECTRIC CYLINDRICAL SHELLS 被引量:5
16
作者 Ding, HJ Guo, YM +1 位作者 Yang, QD Chen, WQ 《Acta Mechanica Solida Sinica》 SCIE EI 1997年第1期48-55,共8页
Three displacement functions are introduced to represent each mechanical displacement according to the 3-D theory in this paper. By expanding the displacement functions and the electric potential in orthogonal series,... Three displacement functions are introduced to represent each mechanical displacement according to the 3-D theory in this paper. By expanding the displacement functions and the electric potential in orthogonal series, the free vibration equation of piezoelectric cylindrical shells satisfying SS3 boundary conditions can be obtained. The equation was solved by utilizing Bessel functions with complex arguments. Results are presented graphically as well as in table, and compared with those of other references. Some frequencies that were missing in Ref. [9] are discovered. 展开更多
关键词 piezoelectric material displacement function free vibration of cylindrical shell
下载PDF
Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities 被引量:3
17
作者 Yanqing WANG Chao YE J.W.ZU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第11期1587-1604,共18页
The free thermal vibration of functionally graded material(FGM) cylindrical shells containing porosities is investigated. Both even distribution and uneven distribution are taken into account. In addition, three therm... The free thermal vibration of functionally graded material(FGM) cylindrical shells containing porosities is investigated. Both even distribution and uneven distribution are taken into account. In addition, three thermal load types, i.e., uniform temperature rise(UTR), nonlinear temperature rise(NLTR), and linear temperature rise(LTR), are researched to explore their effects on the vibration characteristics of porous FGM cylindrical shells. A modified power-law formulation is used to describe the material properties of FGM shells in the thickness direction. Love’s shell theory is used to formulate the straindisplacement equations, and the Rayleigh-Ritz method is utilized to calculate the natural frequencies of the system. The results show that the natural frequencies are affected by the porosity volume fraction, constituent volume fraction, and thermal load. Moreover,the natural frequencies obtained from the LTR have insignificant differences compared with those from the NLTR. Due to the calculation complexity of the NLTR, we propose that it is reasonable to replace it by its linear counterpart for the analysis of thin porous FGM cylindrical shells. The present results are verified in comparison with the published ones in the literature. 展开更多
关键词 functionally graded material(FGM) cylindrical shell POROSITY free vibration thermal load Rayleigh-Ritz method
下载PDF
A NOVEL SEMI-ANALYTICAL METHOD FOR SOLVING ACOUSTIC RADIATION FROM LONGITUDINALLY STIFFENED INFINITE NON-CIRCULAR CYLINDRICAL SHELLS IN WATER 被引量:3
18
作者 XiangYu HuangYuying 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第1期1-12,共12页
Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation... Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method. 展开更多
关键词 sound-structure interaction stifened non-circular cylindrical shell vibration and acoustic radiation semi-analytical method transfer matrix method
下载PDF
Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials 被引量:3
19
作者 李黎 温激鸿 +2 位作者 蔡力 赵宏刚 温熙森 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期307-311,共5页
Using the multilayered cylinder model, we study acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials, which exhibit locally negative effective mass densities. A sp... Using the multilayered cylinder model, we study acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials, which exhibit locally negative effective mass densities. A spring model is introduced to replace the traditional transfer matrix, which may be singular in the negative mass region. The backscattering form function and the scattering cross section are calculated to discuss the acoustic properties of the coated submerged cylindrical shell. 展开更多
关键词 acoustic metamaterials acoustic scattering cylindrical shell
原文传递
Buckling of composite cylindrical shells with ovality and thickness variation subjected to hydrostatic pressure 被引量:2
20
作者 Zhun Li Ke-chun Shen +1 位作者 Xin-hu Zhang Guang Pan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期862-875,共14页
The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two repres... The initial geometric imperfection is one of the primary factors affecting the buckling behaviors of composite cylindrical shells under hydrostatic pressure.In this study,ovality and thickness variations as two representative types of the geometric imperfections are considered.After measuring the geometric imperfections,a typical carbon fiber reinforced polymers(CFRP)cylindrical shell is tested to obtain the buckling pressure.The buckling behaviors of the shell sample are analyzed in combination with the strain responses.By using the nonlinear numerical analysis,the buckling shapes of the CFRP cylinder shells with different combinations of ovality and thickness variation are firstly discussed.The rules of influence of such imperfections on the buckling pressure are then obtained by nonlinear regression method.Finally,an empirical formula is proposed to predict the buckling pressure of the composite cylinder shells,and the calculated results from the formula are in good agreement with the numerical results. 展开更多
关键词 COMPOSITE cylindrical shell BUCKLING Hydrostatic pressure IMPERFECTIONS
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部