期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进DFVDFF网络的变焦深度测量
1
作者 赵涂昊 夏小东 +1 位作者 付茂栗 王觅 《计算机应用》 CSCD 北大核心 2024年第S01期223-228,共6页
针对差分聚焦体(DFV)与变焦深度测量(DFF)联合应用的网络(简称为DFVDFF)精度较低的问题,首先,将特征提取模块的网络结构替换为UNet++,并在深度信息提取模块内增加注意力机制,通过关注重要的特征并融合深层特征和浅层特征提升网络预测的... 针对差分聚焦体(DFV)与变焦深度测量(DFF)联合应用的网络(简称为DFVDFF)精度较低的问题,首先,将特征提取模块的网络结构替换为UNet++,并在深度信息提取模块内增加注意力机制,通过关注重要的特征并融合深层特征和浅层特征提升网络预测的精度;然后,针对DFVDFF生成的深度图纹理边界模糊的问题,使用结构相似度和平滑平均绝对误差融合的损失函数替换原有的平滑平均绝对误差损失函数,通过提升损失函数对纹理边界的敏感程度引导网络生成更清晰的边界。实验结果表明,改进后的网络在有噪声的DDFF-12数据集上,相较于原始DFVDFF网络,均方误差下降了7.40%;在无噪声的FoD500数据集上,相较于原始DFVDFF网络,均方误差下降了19.07%。并且,改进后的网络在两个数据集上生成的深度图比DFVDFF网络生成的深度图具有更清晰的纹理边界。 展开更多
关键词 深度学习 变焦深度测量 dfvdff 结构相似度 损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部