期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
ELECTRON MICROSCOPIC AUTORADIOGRAPHIC STUDIES ON DYNAMICS AND LOCATION OF DNA SYNTHESIS OF DUCK PLAGUE VIRUS
1
作者 翟中和 丁明孝 《Science China Chemistry》 SCIE EI CAS 1982年第10期1052-1060,共9页
Electron microscopic autoradiographic studies on the dynamics and location of DNAsynthesis by means of incorporation of ~8H-thymidine during the replication of duck plaguevirus (DPV) revealed that the duration of DNA ... Electron microscopic autoradiographic studies on the dynamics and location of DNAsynthesis by means of incorporation of ~8H-thymidine during the replication of duck plaguevirus (DPV) revealed that the duration of DNA synthesis of DPV was rather long. The repli-cation of viral DNA occurred simultaneously with the assembly procedure of nucleocapsids, thematuration and release of viruses. DNA synthesis of DPV occurred in the matrix with lowerelectron density in the nucleus. The replicated viral DNA accumulated in the viroplast With highelectron density where the assembly of nucleocapsids occurred. The viroplast with high electrondensity was not the region of viral DNA synthesis. 展开更多
关键词 ELECTRON MICROSCOPIC AUTORADIOGRAPHIC STUDIES ON DYNAMICS AND LOCATION OF dna synthesis OF DUCK PLAGUE VIRUS dna
原文传递
The Possible Involvement of Apoptotic Decay of Terminal Deoxynucleotidyl Transferase-Positive Lymphocytes in the Reutilization of the Extracellular DNA Fragments by Surrounding Living Cells 被引量:1
2
作者 Aleksei N. Shoutko 《Open Journal of Biophysics》 2021年第4期371-382,共12页
The migrating TdT<sup>+</sup> thymocytes can die in other tissues, promoting the surrounding cells’ renewing likes holocrine secretion does. To clarify the role of TdT-enzyme for this function of progenit... The migrating TdT<sup>+</sup> thymocytes can die in other tissues, promoting the surrounding cells’ renewing likes holocrine secretion does. To clarify the role of TdT-enzyme for this function of progenitor lymphocytes, their extracellular media with its components included by living cells analyzed <em>in vitro</em> before and after<em> in vivo</em> irradiation of donor rats. The nucleoid with DNase-sensitive (free) DNA and TdT activity discovered in extracellular media conditioned preliminary by spontaneous apoptotic death of a minor part of the thymocyte’s suspension <em>in vitro</em>. The penetration of labeled products of non-template synthesis with free DNA’ primers from media into cells by pinocytosis confirmed by exogenous polymeric DNA marked artificially. The DNA penetration into cells follows an increase of the cell’s viability and acceleration of spontaneous intracellular DNA-synthesis controlled with labeled thymidine uptake. Both phenomena are typical for either the lowest initial concentration of intact cells or their preliminary irradiation <em>in vivo</em>. The data point to possible involvement of apoptotic decay of TdT<sup>+</sup> cells in the reutilization of the extracellular DNA fragments for reparation/regeneration of surrounding living cells. 展开更多
关键词 THYMOCYTES Apoptosis Terminal Deoxynucleotidyl Transferase Extracellular Activity dna synthesis Precursors Reutilization
下载PDF
STI PCR: An efficient method for amplification and de novo synthesis of long DNA sequences 被引量:1
3
作者 Zhe Zhao Xianrong Xie +10 位作者 Weizhi Liu Jingjing Huang Jiantao Tan Haixin Yu Wubei Zong Jintao Tang Yanchang Zhao Yang Xue Zhizhan Chu Letian Chen Yao-Guang Liu 《Molecular Plant》 SCIE CAS CSCD 2022年第4期620-629,共10页
Despite continuous improvements,it is difficult to efficiently amplify large sequences from complex templates using current PCR methods.Here,we developed a suppression thermo-interlaced(STI)PCR method for the efficien... Despite continuous improvements,it is difficult to efficiently amplify large sequences from complex templates using current PCR methods.Here,we developed a suppression thermo-interlaced(STI)PCR method for the efficient and specific amplification of long DNA sequences from genomes and synthetic DNA pools.This method uses site-specific primers containing a common 50 tag to generate a stem-loop structure,thereby repressing the amplification of smaller non-specific products through PCR suppression(PS).However,large target products are less affected by PS and show enhanced amplification when the competitive amplification of non-specific products is suppressed.Furthermore,this method uses nested thermointerlaced cycling with varied temperatures to optimize strand extension of long sequences with an uneven GC distribution.The combination of these two factors in STI PCR produces a multiplier effect,markedly increasing specificity and amplification capacity.We also developed a webtool,calGC,for analyzing the GC distribution of target DNA sequences and selecting suitable thermo-cycling programs for STI PCR.Using this method,we stably amplified very long genomic fragments(up to 38 kb)from plants and human and greatly increased the length of de novo DNA synthesis,which has many applications such as cloning,expression,and targeted genomic sequencing.Our method greatly extends PCR capacity and has great potential for use in biological fields. 展开更多
关键词 STI PCR PCR suppression thermo-interlaced cycling long genomic fragments de novo dna synthesis
原文传递
Biocompatibility evaluation in vitro. Part II: Functional expression of human and animal osteoblasts on the biomaterials 被引量:1
4
作者 RUAN Jian ming 1,GRANT M. Helen 2 (1.State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China 2.Bioengineering Unit, Strathclyde University, Glasgow, G4 0NW, UK) 《Journal of Central South University of Technology》 2001年第2期75-82,共8页
DNA synthesis and collagen formations on the implant material by cell culture in vitro are the most important phenotypical expression to estimate the biocompatibility. In this part, DNA synthesis and collagen formatio... DNA synthesis and collagen formations on the implant material by cell culture in vitro are the most important phenotypical expression to estimate the biocompatibility. In this part, DNA synthesis and collagen formation on implant materials were quantitatively and qualitatively estimated by radioactive isotope H + thymidine to incorporate into DNA chains, H + proline to incorporate into type I collagen proteins followed by scin tillation counting and antibody antigen immunocytochemistry staining, respectively. Research results demonstrate that hydroxyapatite (HA) stimulates DNA synthesis and collagen formation on the material whereas this stimulation is restricted by adding spinel to the materials. There are statistical differences between the influences of material components on both DNA synthesis and collagen formation. It is supposed that porous materials can supply more platforms for cell anchoring, and more DNA and collagen are synthesised on the porous materials. Immersion in culture medium results in new HA crystal formation on the porous HA materials. 展开更多
关键词 BIOCOMPATIBILITY dna synthesis collagen protein incorporation
下载PDF
Efficient de novo assembly and modification of large DNA fragments 被引量:1
5
作者 Shuangying Jiang Yuanwei Tang +10 位作者 Liang Xiang Xinlu Zhu Zelin Cai Ling Li Yingxi Chen Peishuang Chen Yuge Feng Xin Lin Guoqiang Li Jafar Sharif Junbiao Dai 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第7期1445-1455,共11页
Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes.The construction of the large,gigabase(Gb)-sized genomes of higher organisms will deepen our understandin... Synthetic genomics has provided new bottom-up platforms for the functional study of viral and microbial genomes.The construction of the large,gigabase(Gb)-sized genomes of higher organisms will deepen our understanding of genetic blueprints significantly.But for the synthesis and assembly of such large-scale genomes,the development of new or expanded methods is required.In this study,we develop an efficient pipeline for the construction of large DNA fragments sized 100 kilobases(kb)or above from scratches and describe an efficient method for“scar-free”engineering of the assembled sequences.Our method,therefore,should provide a standard framework for producing long DNA molecules,which are critical materials for synthetic genomics and metabolic engineering. 展开更多
关键词 dna assembly budding yeast large dna fragments sequence modification dna synthesis Synthetic Biology
原文传递
Next-generation sequencing-based analysis of the effect of N^(6)-methyldeoxyadenosine modification on DNA replication in human cells
6
作者 Juan Wang Yuwei Sheng +2 位作者 Ying Yang Xiaoxia Dai Changjun You 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期2077-2080,共4页
N^(6)-methyldeoxyadenosine(6 mdA) modification is considered as a new epigenetic mark that may play important roles in various biological processes.However,it remains unclear about the effect of 6 mdA on DNA replicati... N^(6)-methyldeoxyadenosine(6 mdA) modification is considered as a new epigenetic mark that may play important roles in various biological processes.However,it remains unclear about the effect of 6 mdA on DNA replication in human cells.Herein,we combined next-generation sequencing with shuttle vector technology to explore how 6 mdA affects the efficiency and accuracy of DNA replication in human cells.Our results showed that 6 mdA neither blocked DNA replication nor induced mutations in human cells.Moreover,we found that the depletion of translesion synthesis DNA polymerase(Pol) κ,Pol η,Pol ι or Pol ζ did not significantly change the biological consequences of 6 mdA during replication in human cells.The negligible impact of 6 mdA on DNA replication is consistent with its potential role in epigenetic gene expression. 展开更多
关键词 N^(6)-methyldeoxyadenosine dna replication Next-generation sequencing Shuttle vector technology Translesion synthesis dna polymerase
原文传递
Structural insights into the assembly of human translesion polymerase complexes 被引量:1
7
作者 Wei Xie Xuan Yang +1 位作者 Min Xu Tao Jiang 《Protein & Cell》 SCIE CSCD 2012年第11期864-874,共11页
In addition to DNA repair pathways,cells utilize translesion DNA synthesis(TLS)to bypass DNA lesions during replication.During TLS,Y-family DNA polymerase(Polη,Polκ,Polιand Rev1)inserts specific nucleotide opposite... In addition to DNA repair pathways,cells utilize translesion DNA synthesis(TLS)to bypass DNA lesions during replication.During TLS,Y-family DNA polymerase(Polη,Polκ,Polιand Rev1)inserts specific nucleotide opposite preferred DNA lesions,and then Polζ consisting of two subunits,Rev3 and Rev7,carries out primer extension.Here,we report the complex structures of Rev3-Rev7-Rev1^(CTD) and Rev3-Rev7-Rev1^(CTD)-Polκ^(RIR).These two structures demonstrate that Rev1^(CTD) contains separate binding sites for Polκand Rev7.Our BIAcore experiments provide additional support for the notion that the interaction between Rev3 and Rev7 increases the affinity of Rev7 and Rev1.We also verified through FRET experiment that Rev1,Rev3,Rev7 and Polκ form a stable quaternary complex in vivo,thereby suggesting an efficient switching mechanism where the“inserter”polymerase can be immediately replaced by an“extender”polymerase within the same quaternary complex. 展开更多
关键词 translesion dna synthesis Rev1 Polκ Polζ complex structure
原文传递
RIP140 regulates POLK gene expression and the response to alkylating drugs in colon cancer cells
8
作者 Pascale Palassin Marion Lapierre +7 位作者 Sandrine Bonnet Marie-Jeanne Pillaire Balázs Győrffy Catherine Teyssier Stéphan Jalaguier Jean-Sébastien Hoffmann Vincent Cavaillès Audrey Castet-Nicolas 《Cancer Drug Resistance》 2022年第2期401-414,共14页
Aim:The transcription factor RIP140(receptor interacting protein of 140 kDa)is involved in intestinal tumorigenesis.It plays a role in the control of microsatellite instability(MSI),through the regulation of MSH2 and ... Aim:The transcription factor RIP140(receptor interacting protein of 140 kDa)is involved in intestinal tumorigenesis.It plays a role in the control of microsatellite instability(MSI),through the regulation of MSH2 and MSH6 gene expression.The aim of this study was to explore its effect on the expression of POLK,the gene encoding the specialized translesion synthesis(TLS)DNA polymeraseκknown to perform accurate DNA synthesis at microsatellites.Methods:Different mouse models and engineered human colorectal cancer(CRC)cell lines were used to analyze by RT-qPCR,while Western blotting and luciferase assays were used to elucidate the role of RIP140 on POLK gene expression.Published DNA microarray datasets were reanalyzed.The in vitro sensitivity of CRC cells to methyl methane sulfonate and cisplatin was determined.Results:RIP140 positively regulates,at the transcriptional level,the expression of the POLK gene,and this effect involves,at least partly,the p53 tumor suppressor.In different cohorts of CRC biopsies(with or without MSI),a strong positive correlation was observed between RIP140 and POLK gene expression.In connection with its effect on POLK levels and the TLS function of this polymerase,the cellular response to methyl methane sulfonate was increased in cells lacking the Rip140 gene.Finally,the association of RIP140 expression with better overall survival of CRC patients was observed only when the corresponding tumors exhibited low levels of POLK,thus strengthening the functional link between the two genes in human CRC.Conclusion:The regulation of POLK gene expression by RIP140 could thus contribute to the maintenance of microsatellite stability,and more generally to the control of genome integrity. 展开更多
关键词 Colorectal cancer genome stability translesion dna synthesis polymerase Pol Kappa RIP140
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部