Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ...Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.展开更多
Temperature integration where high day temperatures are compensated by lower night temperatures is one strategy that can be used to reduce energy consumption in greenhouses. Crop tolerance to temperature variation is ...Temperature integration where high day temperatures are compensated by lower night temperatures is one strategy that can be used to reduce energy consumption in greenhouses. Crop tolerance to temperature variation is a prerequisite for using such a strategy. Greenhouse experiments were conducted on tomatoes cvs, Capricia, Mecano and Cederico in order to investigate the effect of different day/night temperature regimes (24/17, 27/14 and 30/11℃) where the same mean temperature was maintained for the production and germination of pollen. In addition, fruit quality as determined by fruit firmness, dry matter content, soluble solids, titratable acids, and pH was examined at harvest and after seven and 14 days of storage. The 30/11℃ treatment significantly increased pollen production and germination compared to the 24/17℃ treatment, while the 27/14℃ treatment was generally in between the other two treatments. Fruits grown at the 27/14℃ treatment were significantly firmer, while fruits grown at 24/17℃ had higher dry matter content, soluble solids, and titratable acids compared to the other treatments. There were significant differences between cultivars with respect to firmness, dry matter, titratable acidity, and pH. The quality of the fruits changed during storage, but the storability of the tomatoes was not affected by preharvest temperature treatments. The overall conclusion was that the 27/14℃ treatment was superior to the other two temperature treatments with respect to the studied parameters.展开更多
基金The authors grate fully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao),China(Grant No.SKUoTSC(UM)-2021-2023/0RP/GA10/2022).
文摘Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications.
文摘Temperature integration where high day temperatures are compensated by lower night temperatures is one strategy that can be used to reduce energy consumption in greenhouses. Crop tolerance to temperature variation is a prerequisite for using such a strategy. Greenhouse experiments were conducted on tomatoes cvs, Capricia, Mecano and Cederico in order to investigate the effect of different day/night temperature regimes (24/17, 27/14 and 30/11℃) where the same mean temperature was maintained for the production and germination of pollen. In addition, fruit quality as determined by fruit firmness, dry matter content, soluble solids, titratable acids, and pH was examined at harvest and after seven and 14 days of storage. The 30/11℃ treatment significantly increased pollen production and germination compared to the 24/17℃ treatment, while the 27/14℃ treatment was generally in between the other two treatments. Fruits grown at the 27/14℃ treatment were significantly firmer, while fruits grown at 24/17℃ had higher dry matter content, soluble solids, and titratable acids compared to the other treatments. There were significant differences between cultivars with respect to firmness, dry matter, titratable acidity, and pH. The quality of the fruits changed during storage, but the storability of the tomatoes was not affected by preharvest temperature treatments. The overall conclusion was that the 27/14℃ treatment was superior to the other two temperature treatments with respect to the studied parameters.