期刊文献+
共找到4,080篇文章
< 1 2 204 >
每页显示 20 50 100
Novel damage constitutive models and new quantitative identification method for stress thresholds of rocks under uniaxial compression
1
作者 DU Kun YI Yang +3 位作者 LUO Xin-yao LIU Kai LI Peng WANG Shao-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2658-2675,共18页
Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id... Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks. 展开更多
关键词 stress threshold acoustic emission damage constitutive model damage element quantitative method
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
2
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 damage constitutive model Parameter calibration Rock modeling SANDSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
An equivalent target plate damage probability calculation mathematics model and damage evaluation method
3
作者 Hanshan Li Xiaoqian Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期82-103,共22页
Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of ci... Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate. 展开更多
关键词 Target damage evaluation damage probability FRAGMENTS Equivalent target plate Image processing
下载PDF
Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys:phase-field modeling
4
作者 Chao Xie Shijie Bai +2 位作者 Xiao Liu Minghua Zhang Jianke Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期361-383,共23页
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the... In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. 展开更多
关键词 Phase field Mg alloys Stress-corrosion coupled damage damage localization Finite element method
下载PDF
YOLO-Based Damage Detection with StyleGAN3 Data Augmentation for Parcel Information-Recognition System
5
作者 Seolhee Kim Sang-Duck Lee 《Computers, Materials & Continua》 SCIE EI 2024年第7期195-215,共21页
Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequentl... Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequently,various studies have been conducted on deep learning techniques related to the detection of parcel damage.This study proposes a deep learning-based damage detectionmethod for various types of parcels.Themethod is intended to be part of a parcel information-recognition systemthat identifies the volume and shipping information of parcels,and determines whether they are damaged;this method is intended for use in the actual parcel-transportation process.For this purpose,1)the study acquired image data in an environment simulating the actual parcel-transportation process,and 2)the training dataset was expanded based on StyleGAN3 with adaptive discriminator augmentation.Additionally,3)a preliminary distinction was made between the appearance of parcels and their damage status to enhance the performance of the parcel damage detection model and analyze the causes of parcel damage.Finally,using the dataset constructed based on the proposed method,a damage type detection model was trained,and its mean average precision was confirmed.This model can improve customer satisfaction and reduce return costs for parcel delivery companies. 展开更多
关键词 Parcel delivery service damage detection damage classification data augmentation generative adversarial network
下载PDF
A strategy for out-of-roundness damage wheels identification in railway vehicles based on sparse autoencoders
6
作者 Jorge Magalhães Tomás Jorge +7 位作者 Rúben Silva António Guedes Diogo Ribeiro Andreia Meixedo Araliya Mosleh Cecília Vale Pedro Montenegro Alexandre Cury 《Railway Engineering Science》 EI 2024年第4期421-443,共23页
Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels... Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels. 展开更多
关键词 OOR wheel damage damage identification Sparse autoencoder Passenger trains Wayside condition monitoring
下载PDF
A Two-step Inverse Method for Quantitative Damage Evaluation of Plate-like Structures Using Vibration Approach
7
作者 Shuai He Jiaxin Li +2 位作者 Xuejing Wu Chunhui Wang Tianran Lin 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期32-39,共8页
This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employ... This study presents a novel two-step approach to assess plate-like structural laminar damages,particularly for delamination damage detection of composite structures.Firstly,a 2-D continuous wavelet transform is employed to identify the damage location and sizes from vibration curvature data.An inverse method is subsequently then used to determine the bending stiffness reduction ratio along a specified direction,enabling the quantification of the delamination severity.The method employed in this study is an extension of the one-dimensional inverse method developed in a previous work of the authors.The applicability of the two-step inverse approach is demonstrated in a simulation analysis and by an experimental study on a cantilever composite plate containing a single delamination.The inverse method is shown to have the capacity to reveal the detailed damage information of delamination within a constrained searching space and can be used to determine the effective flexural stiffness of composite plate structures,even in cases of complex delamination damage. 展开更多
关键词 2-D continuous wavelet transform damage quantification delamination damage inverse method VIBRATION
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
8
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing Reservoir damage
下载PDF
Modulation of p75 neurotrophin receptor mitigates brain damage following ischemic stroke in mice 被引量:1
9
作者 Golnoush Mirzahosseini Tauheed Ishrat 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2093-2094,共2页
Stroke is a significant leading cause of death and disability in the United States(Tsao et al.,2022).Approximately 87% of strokes fall into the ischemic category,mainly caused by arterial blockage(Jayaraj et al.,2019)... Stroke is a significant leading cause of death and disability in the United States(Tsao et al.,2022).Approximately 87% of strokes fall into the ischemic category,mainly caused by arterial blockage(Jayaraj et al.,2019).Although the only FDA-approved effective medication is tissue plasminogen activator(tPA),it should be administrated within 4.5 hours of ischemic stroke.Furthermore,tPA has been an integral part of managing acute ischemic stro ke. 展开更多
关键词 damage ARTERIAL DEATH P75
下载PDF
Rockburst criterion and evaluation method for potential rockburst pit depth considering excavation damage effect 被引量:1
10
作者 Jinhao Dai Fengqiang Gong Lei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1649-1666,共18页
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta... Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth. 展开更多
关键词 Deep tunnel ROCKBURST Rockburst pit Excavation damage effect Hoek-Brown criterion
下载PDF
Enhanced structural damage behavior of liquid-filled tank by reactive material projectile impact 被引量:1
11
作者 Jianwen Xie Yuanfeng Zheng +4 位作者 Zhenyang Liu Chengzhe Liu Aoxin Liu Pengwan Chen Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期211-229,共19页
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s... A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior. 展开更多
关键词 Reactive material projectile Hydrodynamic ram Enhanced structural damage Liquid-filled tank Impact
下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
12
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D Numerical modeling
下载PDF
Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading 被引量:1
13
作者 Xin Yu Yuye Tan +4 位作者 Weidong Song John Kemeny Shengwen Qi Bowen Zheng Songfeng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期597-615,共19页
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ... Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations. 展开更多
关键词 Rock and backfill Triaxial cyclic loading Volume fraction damage evolution 3D visualization
下载PDF
Modeling time-dependent mechanical behavior of hard rock considering excavation-induced damage and complex 3D stress states 被引量:1
14
作者 Peiyang Yu Xiuli Ding +3 位作者 Peng-Zhi Pan Shuting Miao Zhaofeng Wang Shuling Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4046-4065,共20页
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon... To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed. 展开更多
关键词 Hard rock Excavation damage Complex stress state Three-dimensional(3D)time-dependent model
下载PDF
An extended micromechanical-based plastic damage model for understanding water effects on quasi-brittle rocks
15
作者 Qiaojuan Yu Shigui Du +3 位作者 Qizhi Zhu Zhanyou Luo Sili Liu Lunyang Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期289-304,共16页
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani... Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water. 展开更多
关键词 Water MICRO-CRACK damage MICRO-MECHANICS Constitutive model Cohesive force
下载PDF
Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding
16
作者 Chen Li Yuxiu Hu +4 位作者 Zongze Wei Chongjun Wu Yunfeng Peng Feihu Zhang Yanquan Geng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期469-484,共16页
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio... Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives. 展开更多
关键词 GRINDING double-grits molecular dynamics damage material removal gallium nitride
下载PDF
Effects of the initiation position on the damage and fracture characteristics of linear-charge blasting in rock
17
作者 Chenxi Ding Renshu Yang +3 位作者 Xiao Guo Zhe Sui Chenglong Xiao Liyun Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期443-451,共9页
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre... To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition. 展开更多
关键词 BLASTING linear charge initiation position computed tomography three-dimensional reconstruction damage
下载PDF
Graph theoretical analysis of limestone fracture network damage patterns based on uniaxial compression test
18
作者 Mingyang Wang Congcong Wang +2 位作者 Enzhi Wang Xiaoli Liu Xiao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3485-3510,共26页
The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock m... The topological attributes of fracture networks in limestone,subject to intense hydrodynamics and intricate geological discontinuities,substantially influence the mechanical and hydraulic characteristics of the rock mass.The dynamical evolution of fracture networks under stress is crucial for unveiling the interaction patterns among fractures.However,existing models are undirected graphs focused on stationary topology,which need optimization to depict fractures'dynamic development and rupture process.To compensate for the time and destruction terms,we propose the damage network model,which defines the physical interpretation of fractures through the ternary motif.We focus primarily on the evolution of node types,topological attributes,and motifs of the fracture network in limestone under uniaxial stress.Observations expose the varying behavior of the nodes'self-dynamics and neighbors'adjacent dynamics in the fracture network.This approach elucidates the impact of micro-crack behaviors on large brittle shear fractures from a topological perspective and further subdivides the progressive failure stage into four distinct phases(isolated crack growth phase,crack splay phase,damage coalescence phase,and mechanical failure phase)based on the significance profile of the motif.Regression analysis reveals a positive linear and negative power correlation between fracture network density and branch number to the rock damage resistance,respectively.The damage network model introduces a novel methodology for depicting the interaction of two-dimensional(2D)projected fractures,considering the dynamic spatiotemporal development characteristics and fracture geometric variation.It helps dynamically characterize properties such as connectivity,permeability,and damage factors while comprehensively assessing damage in rock mass fracture networks. 展开更多
关键词 MOTIF Fracture network Topological property damage resistance LIMESTONE
下载PDF
Experimental study of the damage characteristics of rocks containing non-penetrating cracks under cyclic loading
19
作者 Jun Xu Xiaochun Xiao +3 位作者 Lu Ma Sen Luo Jiaxu Jin Baijian Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期197-210,共14页
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ... The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures. 展开更多
关键词 damage characteristics Constitutive model Fissured rocks Non-penetrating crack Cyclic loading
下载PDF
Constitutive model of viscoelastic dynamic damage for the material of gas obturator in modular-charge howitzer
20
作者 Zhonggang Li Longmiao Chen +2 位作者 Yifan Li Yufeng Jia Quan Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期203-216,共14页
In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing... In order to investigate the mechanical response behavior of the gas obturator of the breech mechanism,made of polychloroprene rubber(PCR), uniaxial compression experiments were carried out by using a universal testing machine and a split Hopkinson pressure bar(SHPB), obtaining stress-strain responses at different temperatures and strain rates. The results revealed that, in comparison to other polymers, the gas obturator material exhibited inconspicuous strain softening and hardening effects;meanwhile, the mechanical response was more affected by the strain rate than by temperature. Subsequently, a succinct viscoelastic damage constitutive model was developed based on the ZWT model, including ten undetermined parameters, formulated with incorporating three parallel components to capture the viscoelastic response at high strain rate and further enhanced by integrating a three-parameter Weibull function to describe the damage. Compared to the ZWT model, the modified model could effectively describe the mechanical response behavior of the gas obturator material at high strain rates. This research laid a theoretical foundation for further investigation into the influence of chamber sealing issues on artillery firing. 展开更多
关键词 Breech mechanism Gas obturator Polychloroprene rubber Constitutive model Strain rate damage
下载PDF
上一页 1 2 204 下一页 到第
使用帮助 返回顶部