期刊文献+
共找到3,045篇文章
< 1 2 153 >
每页显示 20 50 100
Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments 被引量:2
1
作者 Amani Tahat Jordi Marti +1 位作者 Ali Khwaldeh Kaher Tahat 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期410-421,共12页
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu... In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. 展开更多
关键词 pattern recognition proton transfer chart pattern data mining artificial neural network empiricalvalence bond
原文传递
Detecting network intrusions by data mining and variable-length sequence pattern matching 被引量:2
2
作者 Tian Xinguang Duan Miyi +1 位作者 Sun Chunlai Liu Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期405-411,共7页
Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux... Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux systems. The method uses the data mining technique to model the normal behavior of a privileged program and uses a variable-length pattern matching algorithm to perform the comparison of the current behavior and historic normal behavior, which is more suitable for this problem than the fixed-length pattern matching algorithm proposed by Forrest et al. At the detection stage, the particularity of the audit data is taken into account, and two alternative schemes could be used to distinguish between normalities and intrusions. The method gives attention to both computational efficiency and detection accuracy and is especially applicable for on-line detection. The performance of the method is evaluated using the typical testing data set, and the results show that it is significantly better than the anomaly detection method based on hidden Markov models proposed by Yan et al. and the method based on fixed-length patterns proposed by Forrest and Hofmeyr. The novel method has been applied to practical hosted-based intrusion detection systems and achieved high detection performance. 展开更多
关键词 intrusion detection anomaly detection system call data mining variable-length pattern
下载PDF
Multidimensional Visualization of Bikeshare Travel Patterns Using a Visual Data Mining Technique: Data Cubes
3
作者 Xinwei Ma Yanjie Ji +2 位作者 Yang Liu Yuchuan Jin Chenyu Yi 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期265-277,共13页
In order to explore the travel characteristics and space-time distribution of different groups of bikeshare users,an online analytical processing(OLAP)tool called data cube was used for treating and displaying multi-d... In order to explore the travel characteristics and space-time distribution of different groups of bikeshare users,an online analytical processing(OLAP)tool called data cube was used for treating and displaying multi-dimensional data.We extended and modified the traditionally threedimensional data cube into four dimensions,which are space,date,time,and user,each with a user-specified hierarchy,and took transaction numbers and travel time as two quantitative measures.The results suggest that there are two obvious transaction peaks during the morning and afternoon rush hours on weekdays,while the volume at weekends has an approximate even distribution.Bad weather condition significantly restricts the bikeshare usage.Besides,seamless smartcard users generally take a longer trip than exclusive smartcard users;and non-native users ride faster than native users.These findings not only support the applicability and efficiency of data cube in the field of visualizing massive smartcard data,but also raise equity concerns among bikeshare users with different demographic backgrounds. 展开更多
关键词 bikeshare smartcard data TRAVEL pattern MULTIDIMENSIONAL VISUALIZATION
下载PDF
An Efficient Outlier Detection Approach on Weighted Data Stream Based on Minimal Rare Pattern Mining 被引量:1
4
作者 Saihua Cai Ruizhi Sun +2 位作者 Shangbo Hao Sicong Li Gang Yuan 《China Communications》 SCIE CSCD 2019年第10期83-99,共17页
The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional... The distance-based outlier detection method detects the implied outliers by calculating the distance of the points in the dataset, but the computational complexity is particularly high when processing multidimensional datasets. In addition, the traditional outlier detection method does not consider the frequency of subsets occurrence, thus, the detected outliers do not fit the definition of outliers (i.e., rarely appearing). The pattern mining-based outlier detection approaches have solved this problem, but the importance of each pattern is not taken into account in outlier detection process, so the detected outliers cannot truly reflect some actual situation. Aimed at these problems, a two-phase minimal weighted rare pattern mining-based outlier detection approach, called MWRPM-Outlier, is proposed to effectively detect outliers on the weight data stream. In particular, a method called MWRPM is proposed in the pattern mining phase to fast mine the minimal weighted rare patterns, and then two deviation factors are defined in outlier detection phase to measure the abnormal degree of each transaction on the weight data stream. Experimental results show that the proposed MWRPM-Outlier approach has excellent performance in outlier detection and MWRPM approach outperforms in weighted rare pattern mining. 展开更多
关键词 OUTLIER detection WEIGHTED data STREAM MINIMAL WEIGHTED RARE pattern MINING deviation factors
下载PDF
Mining Time Pattern Association Rules in Temporal Database
5
作者 Nguyen Dinh Thuan 《通讯和计算机(中英文版)》 2010年第3期50-56,共7页
关键词 挖掘关联规则 时间模式 时态数据库 大型数据库 时间间隔 优化技术 验算法
下载PDF
Spatial-Temporal Features of Wuhan Urban Agglomeration Regional Development Pattern—Based on DMSP/OLS Night Light Data
6
作者 Mengjie Zhang Wenwei Miao +2 位作者 Yingpin Yang Chong Peng Yaping Huang 《Journal of Building Construction and Planning Research》 2017年第1期14-29,共16页
Based on the night light data, urban area data, and economic data of Wuhan Urban Agglomeration from 2009 to 2015, we use spatial correlation dimension, spatial self-correlation analysis and weighted standard deviation... Based on the night light data, urban area data, and economic data of Wuhan Urban Agglomeration from 2009 to 2015, we use spatial correlation dimension, spatial self-correlation analysis and weighted standard deviation ellipse to identify the general characteristics and dynamic evolution characteristics of urban spatial pattern and economic disparity pattern. The research results prove that: between 2009 and 2013, Wuhan Urban Agglomeration expanded gradually from northwest to southeast and presented the dynamic evolution features of “along the river and the road”. The spatial structure is obvious, forming the pattern of “core-periphery”. The development of Wuhan Urban Agglomeration has obvious imbalance in economic geography space, presenting the development tendency of “One prominent, stronger in the west and weaker in the east”. The contract within Wuhan Urban Agglomeration is gradually decreased. Wuhan city and its surrounding areas have stronger economic growth strength as well as the cities along The Yangtze River. However, the relative development rate of Wuhan city area is still far higher than other cities and counties. 展开更多
关键词 NIGHT LIGHT data URBAN Spatial pattern Economic DISPARITY pattern Wuhan URBAN Agglomeration
下载PDF
A Test Pattern Identification Algorithm and Its Application to CINRAD/SA(B) Data
7
作者 JIANG Yuan LIU Liping 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第2期331-343,共13页
A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal... A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal or radar hardware failures in CINRAD (China New Generation Weather Radar) SA and SB radar operational observations are investigated.In order to distinguish the test pattern from other types of radar echoes,such as precipitation,clear air and other non-meteorological echoes,five feature parameters including the effective reflectivity data percentage (Rz),velocity RF (range folding) data percentage (RRF),missing velocity data percentage (RM),averaged along-azimuth reflectivity fluctuation (RNr,z) and averaged along-beam reflectivity fluctuation (RNa,z) are proposed.Based on the fuzzy logic method,a test pattern identification algorithm is developed,and the statistical results from all the different kinds of radar echoes indicate the performance of the algorithm.Analysis of two typical cases with heavy precipitation echoes located inside the test pattern are performed.The statistical results show that the test pattern identification algorithm performs well,since the test pattern is recognized in most cases.Besides,the algorithm can effectively remove the test pattern signal and retain strong precipitation echoes in heavy rainfall events. 展开更多
关键词 quality control test pattern fuzzy logic radar data
下载PDF
Transforming Data into Actionable Insights with Cognitive Computing and AI 被引量:1
8
作者 Saleimah Al Mesmari 《Journal of Software Engineering and Applications》 2023年第6期211-222,共12页
How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable i... How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable insights by utilizing the power of cutting-edge algorithms and machine learning, empowering enterprises to make deft decisions quickly and efficiently. This article explores the idea of cognitive computing and AI in decision-making, emphasizing its function in converting unvalued data into valuable knowledge. It details the advantages of utilizing these technologies, such as greater productivity, accuracy, and efficiency. Businesses may use cognitive computing and AI to their advantage to obtain a competitive edge in today’s data-driven world by knowing their capabilities and possibilities [1]. 展开更多
关键词 Business Growth Technology Natural Language Processing Neural Networks data Analysis pattern Recognition Automation Cognitive Computing Artificial Intelligence Actionable Insights Machine Learning Natural Language Virtual Assistants Chatbots Voice-Activated Devices
下载PDF
东北三省耕地利用格局变化对粮食全要素生产率的影响 被引量:4
9
作者 余志刚 陈琛 崔钊达 《农业资源与环境学报》 CAS CSCD 北大核心 2024年第1期1-14,共14页
耕地是粮食生产最基本的要素,当前粮食需求扩大与粮食生产区域性不足矛盾突出,寻求更合理的耕地利用格局来实现粮食全要素生产率的提升具有重要意义。本研究基于土地利用/土地覆被变化(LUCC)遥感监测数据,应用GIS软件提取东北三省2000、... 耕地是粮食生产最基本的要素,当前粮食需求扩大与粮食生产区域性不足矛盾突出,寻求更合理的耕地利用格局来实现粮食全要素生产率的提升具有重要意义。本研究基于土地利用/土地覆被变化(LUCC)遥感监测数据,应用GIS软件提取东北三省2000、2005、2010、2015年耕地利用格局相关数据,同时运用数据包络分析模型估算了2000、2005、2010年和2015年东北三省区域和市域粮食全要素生产率。在耕地利用格局变化分析和粮食全要素生产率测算的基础上,从耕地利用格局变化的角度选取指标构建面板数据模型,定量分析其对粮食全要素生产率的影响。结果表明:东北三省市域粮食全要素生产率4个时期均值分别为0.81、0.78、0.82和0.83,粮食全要素生产率空间分布从最初的相对均匀到局部集聚;耕地转出率和耕地斑块破碎度与粮食全要素生产率呈负相关关系,耕地面积比例、耕地转入率和耕地斑块聚合度与粮食全要素生产率呈正相关关系;东北三省粮食全要素生产率提高主要源于耕地面积增加、林地和未利用地向耕地的转入以及耕地在流域的聚合,粮食全要素生产率的降低主要源于耕地转入减少和建设用地对耕地的嵌入式占用。研究表明,严格规划耕地利用格局、持续开展土地整理、提高耕地聚合度,可在保证耕地有效数量的同时,提高耕地利用格局的集聚性和合理性,促进粮食全要素生产率的提升。 展开更多
关键词 粮食全要素生产率 耕地利用格局 数据包络分析 影响分析 东北三省
下载PDF
“stppSim”: A Novel Analytical Tool for Creating Synthetic Spatio-Temporal Point Data
10
作者 Monsuru Adepeju 《Open Journal of Modelling and Simulation》 2023年第4期99-116,共18页
In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotempor... In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science. 展开更多
关键词 OPEN-SOURCE Synthetic data CRIME Spatio-Temporal patterns data Privacy
下载PDF
重大铁路工程施工对沿线生态环境的影响
11
作者 张静晓 程莉渊 +2 位作者 李慧 仲美稣 曹舒雯 《工程管理学报》 2024年第5期75-80,共6页
重大铁路工程施工途经多个地貌单元,地形地貌复杂,生态环境脆弱。基于地理探测器模型,利用遥感数据,选取客观权重赋权法(CRITIC)整合4个指标绿度(NDVI)、湿度(WET)、干度(NDBSI)、热度(LST)构建遥感生态指数。以投入运营的铁路工程为例... 重大铁路工程施工途经多个地貌单元,地形地貌复杂,生态环境脆弱。基于地理探测器模型,利用遥感数据,选取客观权重赋权法(CRITIC)整合4个指标绿度(NDVI)、湿度(WET)、干度(NDBSI)、热度(LST)构建遥感生态指数。以投入运营的铁路工程为例,剖析其沿线生态环境变化效应及驱动因素。通过客观分析铁路工程沿线生态环境时空变化特征,旨在实现铁路与区域环境的可持续发展。研究为重大铁路工程建设生态环境评价提供方法支撑,为铁路沿线生态修复与保护政策的制定奠定基础。 展开更多
关键词 重大铁路工程 驱动因子 遥感数据 景观格局 遥感生态指数
下载PDF
异常检测在网络安全防护中的应用研究
12
作者 刘洋 翟锐 巩坤 《邮电设计技术》 2024年第8期24-28,共5页
图像异常数据作为网络安全检测的核心监控对象,面临着样本不均衡、数据缺乏标注以及异常形式多样化等挑战,针对这些问题,创新性地提出了自信息量挖掘模块,旨在学习已知类别样本的数据模式;同时提出了三元组信息量学习策略,优化类别信息... 图像异常数据作为网络安全检测的核心监控对象,面临着样本不均衡、数据缺乏标注以及异常形式多样化等挑战,针对这些问题,创新性地提出了自信息量挖掘模块,旨在学习已知类别样本的数据模式;同时提出了三元组信息量学习策略,优化类别信息学习和已知类别的数据模式学习,最终实现了在网络安全防护场景中对图像的未知类别样本的异常检测。实验结果表明,异常检测算法可以有效提升网络安全防护的准确性,在实际应用中表现出色。 展开更多
关键词 深度学习 异常检测 网络安全 数据模式
下载PDF
基于数据挖掘探讨《普济方》所载中药治疗高血压相关眼病的用药规律
13
作者 杨玉霞 邢雅璇 +1 位作者 赵俊英 张京春 《中国中医眼科杂志》 2024年第9期820-823,828,共5页
目的 基于数据挖掘,探讨《普济方》中中药治疗高血压相关眼病的用药规律,并探讨高频核心药物运用思路及理论基础。方法 以《普济方》中治疗头目昏、头目眩、眼痛方为数据来源,使用“中医传承计算平台v 3.0”进行数据挖掘,对纳入的中药... 目的 基于数据挖掘,探讨《普济方》中中药治疗高血压相关眼病的用药规律,并探讨高频核心药物运用思路及理论基础。方法 以《普济方》中治疗头目昏、头目眩、眼痛方为数据来源,使用“中医传承计算平台v 3.0”进行数据挖掘,对纳入的中药组方进行关联分析和聚类分析,探寻高血压相关眼病的高频药物及使用规律。结果 (1)一般情况:最终纳入的101个中药组方,212味中药。(2)性味归经:药性以温性居多,使用频次为367次,占总频次的40.60%。药味以辛为主,使用频次为456次,占总频次的33.48%。高频归经为肺经,使用频次为426次,占总频次的10.92%。药物功效主要是祛风、补虚、平肝熄风,使用频率最高的单味药依次为防风、川芎、甘草、人参、细辛。(3)聚类分析:高频药物组合有,防风、细辛-川芎;川芎、防风-天麻;防风-炙甘草,新核心类组方3个,组合I为人参、茯苓、炙甘草、天麻、川芎;组合II为菊花、防风、炙甘草、半夏、大黄;组合III为防风、川芎、天麻、羌活、冰片。结论《普济方》治疗高血压相关眼病多以发散风邪、补虚固中、清热育阴、平肝息风为主要治法,以达“明目、止眩”的治疗效果。 展开更多
关键词 高血压相关眼病 中药 用药规律 数据挖掘
下载PDF
基于中医传承辅助平台对布鲁氏菌病肝肾亏虚证用药规律的分析
14
作者 王鼎盛 赵天莹 +5 位作者 何琼 席进孝 王小荣 关宏 周晓艳 赵琦 《西部中医药》 2024年第6期84-88,共5页
目的:分析中医治疗布鲁氏菌病肝肾亏虚证的用药规律,挖掘有效的药物组合及新处方。方法:检索相关数据库并查阅资料,收集关于布鲁氏菌病肝肾亏虚证的文献和医案,筛选治疗该病证的方剂。基于中医传承辅助平台(V2.5)建立方药特征数据库,并... 目的:分析中医治疗布鲁氏菌病肝肾亏虚证的用药规律,挖掘有效的药物组合及新处方。方法:检索相关数据库并查阅资料,收集关于布鲁氏菌病肝肾亏虚证的文献和医案,筛选治疗该病证的方剂。基于中医传承辅助平台(V2.5)建立方药特征数据库,并通过关联规则分析法、熵层次聚类等方法,对处方用药进行数据分析,包括对用药频次统计、组方规律进行挖掘等。结果:肝肾亏虚的症状出现54条,症状频次总共224次,其中频率在5以上的18条,总共出现147次,占总数的65.6%。筛选出关于布鲁氏菌病肝肾亏虚证的组方17首,中药38味,使用频次最高的5味中药为牛膝、枸杞子、当归、续断、桑寄生,并取得核心药物组合14条,药物规则主要为牛膝、党参、续断、当归、桑寄生、枸杞子、黄精之间的组合,核心组合4条、得出2个新的处方。结论:中医治疗布鲁氏菌病肝肾亏虚证用药以补肝肾、强筋骨、祛风湿、养气血之品为主,新方组成体现了祛邪扶正、标本兼顾,可使肝肾强、风湿除而血气足、痹痛愈。 展开更多
关键词 布鲁氏菌病 肝肾亏虚证 中医传承辅助系统 数据挖掘 用药规律
下载PDF
基于夜光数据的昆明市城市扩张格局演变分析
15
作者 赵政权 罗虹 《测绘与空间地理信息》 2024年第1期81-84,88,共5页
基于夜光数据采用POI&NPP综合指数提取建成区,然后进行建成区面积精度评定,从定性和定量两个角度进行城市扩张空间形态及格局演变分析。结果表明:1)POI融入夜光数据后,提高了提取的精度,提取边界与实际的分布范围更为接近。2)扩张... 基于夜光数据采用POI&NPP综合指数提取建成区,然后进行建成区面积精度评定,从定性和定量两个角度进行城市扩张空间形态及格局演变分析。结果表明:1)POI融入夜光数据后,提高了提取的精度,提取边界与实际的分布范围更为接近。2)扩张速度和强度较快区域主要集中在呈贡区、嵩明县等,而较慢区域集中在北部的禄劝县、东川区、寻甸县等;嵩明县的动态变化率最高,中心城区的区域动态变化率较低,北部的寻甸县、东南部的宜良县、石林县动态变化率反而较高。3)昆明市整体上经济重心经度方向为向东偏移,纬度方向为向南偏移。 展开更多
关键词 夜光数据 昆明市 城市扩张 格局分析
下载PDF
理论驱动与数据驱动相结合的学习者绩效预测研究
16
作者 马海英 马潇箫 《化工高等教育》 2024年第3期24-34,共11页
对学生的学习成绩进行精准预测,可以尽早识别风险学生并采取有针对性的干预措施。文章以某高校修读计算机网络与云计算课程的160名本科生为研究对象,结合理论驱动和数据驱动的方法,运用聚类分析及交叉分析法,研究了学生主观自评和在线... 对学生的学习成绩进行精准预测,可以尽早识别风险学生并采取有针对性的干预措施。文章以某高校修读计算机网络与云计算课程的160名本科生为研究对象,结合理论驱动和数据驱动的方法,运用聚类分析及交叉分析法,研究了学生主观自评和在线学习行为数据对预测学生成绩的作用。研究发现,理论驱动方法识别出了“深度学习”和“浅层学习”2种在线学习模式,且这2种学习模式下的学生在各项学习成绩上存在显著差异;数据驱动方法识别出了4种(积极主动型、任务型、被动型、消极被动型)在线学习模式,且这4类学习模式下的学生在学习行为及各项成绩上均存在显著差异。本研究进一步采用交叉分析法细分出7种学习模式,并发现这7类学生在学习投入、学习策略、学习行为及各项学习成绩上均存在显著差异。 展开更多
关键词 在线学习模式 理论驱动 数据驱动
下载PDF
常压储罐底板腐蚀的多源数据评价
17
作者 邢述 马骏 +2 位作者 康小伟 郭洪 张加东 《中国特种设备安全》 2024年第9期75-81,共7页
为提高储罐检验效率和腐蚀评价准确性,通过某油田公司管辖储罐的损伤模式识别、在线声发射检测和开罐检验进行验证与评价,结果表明:罐体结构不合理易导致隔热层下腐蚀和土壤腐蚀,罐内部易发生微生物腐蚀和酸性(含硫)污水腐蚀;声发射检... 为提高储罐检验效率和腐蚀评价准确性,通过某油田公司管辖储罐的损伤模式识别、在线声发射检测和开罐检验进行验证与评价,结果表明:罐体结构不合理易导致隔热层下腐蚀和土壤腐蚀,罐内部易发生微生物腐蚀和酸性(含硫)污水腐蚀;声发射检测可获取底板腐蚀状态和可能发生腐蚀的区域;空间数据扫描可间接获取因局部变形导致的腐蚀环境分布情况。因此,先通过声发射检测和空间数据扫描预判腐蚀损伤区域,可提高开罐检验效率和准确性。 展开更多
关键词 常压储罐 声发射检测 空间数据扫描 损伤模式识别 腐蚀评价
下载PDF
城市休闲产业聚类模式APM算法模型开发与校验
18
作者 刘逸 吴雪涵 许汀汀 《旅游学刊》 CSSCI 北大核心 2024年第4期40-52,共13页
城市休闲相关产业的高质量发展对当前我国城市消费升级以及人居环境质量提升具有重要现实意义。但是,现有研究未能精准地捕捉海量广域分布的城市休闲产业的基本空间分布规律与结构,而已有的空间聚类算法较多适用于城市用地分析,未能很... 城市休闲相关产业的高质量发展对当前我国城市消费升级以及人居环境质量提升具有重要现实意义。但是,现有研究未能精准地捕捉海量广域分布的城市休闲产业的基本空间分布规律与结构,而已有的空间聚类算法较多适用于城市用地分析,未能很好地适用于离散分布的城市休闲产业研究。为此,文章基于空间兴趣点数据,开发距离通达值及空间集群中心点等算法,构建城市休闲旅游产业聚类模式空间算法模型(APM)。在以广州为例的研究中,APM模型捕捉出3170个以500 m步行生活圈为范围的城市休闲产业集群,校验了APM模型的科学性与应用价值。整体上,APM算法可以较好地捕捉城市休闲业态集群的空间结构,清晰识别城市休闲产业空间冷、热点分布的基本结构,由其捕捉行程的聚类边界与实际道路和建筑走向、水系边界、区域范围等重合度高,聚类集群符合实际情况,具备可信度与有效性。该研究是休闲产业集聚机制研究的一次方法创新,在算法精度、实际应用、可视化效率上均做出了创新性推进。与Fishnet方法相比,可以更科学精准地识别城市内部多个休闲消费商圈的边界,实现了高效率的城市休闲产业集群捕捉;与同位模型相比,可以呈现多类别的城市休闲业态结构,突破了现有研究只能捕捉两类业态组团的局限。 展开更多
关键词 城市旅游休闲 产业集聚模式 空间数据挖掘 聚类算法 POI 广州市
下载PDF
数据要素市场体系建构与价值实现路径探索 被引量:6
19
作者 孙建军 巴志超 夏义堃 《情报学报》 CSSCI CSCD 北大核心 2024年第1期1-9,共9页
数据要素市场体系的顶层设计是加快推进数字要素市场化配置、推动我国数字经济高质量发展的前提基础与关键部署。通过剖析当前全国数据要素统一大市场建设面临的瓶颈与挑战,本文分析数据要素市场建设的特殊性,提出全国统一数据要素市场... 数据要素市场体系的顶层设计是加快推进数字要素市场化配置、推动我国数字经济高质量发展的前提基础与关键部署。通过剖析当前全国数据要素统一大市场建设面临的瓶颈与挑战,本文分析数据要素市场建设的特殊性,提出全国统一数据要素市场体系“一体两翼”“三基”“七要点”的总体架构思路,以及战略布局、结构布局和空间布局相统一的总体布局方案,并从市场体系建设新特征、内在结构与运行模式解析、数据要素市场与传统要素市场一体化联动机理揭示与场景应用示范等方面探索促进数据要素市场价值升级与高质量发展的实现路径,从而为推动数据资源化、资产化和资本化的可持续运营提供参考借鉴。 展开更多
关键词 数据要素 市场体系架构 价值实现路径 运行模式 联动机制
下载PDF
Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining
20
作者 Abdirahman Alasow Marek Perkowski 《Journal of Quantum Information Science》 CAS 2023年第1期1-23,共23页
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre... Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits. 展开更多
关键词 data Mining Association Rule Mining Frequent pattern Apriori Algorithm Quantum Counter Quantum Comparator Grover’s Search Algorithm
下载PDF
上一页 1 2 153 下一页 到第
使用帮助 返回顶部