Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u...Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.展开更多
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,hi...The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.展开更多
Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
By analyzing the structural background,petroleum geological conditions,and typical regional(paleo) oil and gas reservoirs in marine ultra-deep oil and gas regions in China,this paper reveals the evolution processes of...By analyzing the structural background,petroleum geological conditions,and typical regional(paleo) oil and gas reservoirs in marine ultra-deep oil and gas regions in China,this paper reveals the evolution processes of the marine ultra-deep oil and gas reservoirs and the key controlling factors of accumulation.The marine ultra-deep oil and gas resources in China are buried at depth of greater than 6000 m,and are mainly distributed in the Precambrian and Lower Paleozoic strata in the Sichuan,Tarim and Ordos cratonic basins.The development of marine ultra-deep source rocks in China is controlled by cratonic rifts and cratonic depressions with the background of global supercontinent breakup-convergence cycles.The source rocks in Sichuan Basin have the most developed strata,followed by Tarim Basin,and the development strata and scale of Ordos Basin needs to be further confirmed.The marine ultra-deep reservoir in China is dominated by carbonate rocks,and the reservoir performance is controlled by high-energy sedimentary environment in the early stage,superimposed corrosion and fracture in the later stage.The regional caprocks are dominated by gypsum salt rocks,shale,and tight carbonate rock.The ultra-deep oil and gas fields in China have generally experienced two stages of oil-reservoir forming,cracking(or partial cracking) of paleo-oil reservoirs,and late finalization of cracked gas(or highly mature to over mature oil and gas).The oil and gas accumulation is controlled by static and dynamic geological elements jointly.Major hydrocarbon generation center,high quality and large-scale reservoir resulted from karstification of high energy facies belt,thick gypsum rock or shale caprock,and stable trapping and preservation conditions are the key factors for accumulation of ultra-deep oil and gas.We propose three favorable exploration directions,i.e.the areas around intracratonic rift and intracratonic depression,and craton margin.展开更多
Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and anal...Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and analyze the mechanisms responsible for their occurrence.Based on the deep parallel tunnels with the maximum depth of 1890 m created as part of the Neelum–Jhelum hydropower project in Pakistan,similarities and differences on excavation-induced microseismicity and rockburst occurrence between parallel tunnels with soft and hard alternant strata are studied.Results show that a large number of microseismic(MS)events occurred in each of the parallel tunnels during excavation.Rockbursts occurred most frequently in certain local sections of the two tunnels.Significant differences are found in the excavation-induced microseismicity(spatial distribution and number of MS events,distribution of MS energy,and pattern of microseismicity variation)and rockbursts characteristics(the number and the spatial distribution)between the parallel tunnels.Attempting to predict the microseismicity and rockburst intensities likely to be encountered in subsequent tunnel based on the activity encountered when the parallel tunnel was previously excavated will not be an easy or accurate procedure in deep tunnel projects involving complex lithological conditions.展开更多
The problem of water preservation in mining and the prevention of water-bursts has been one of the more important issues in deep mining. Based on the concept of water-resisting key strata, the mechanics model of the k...The problem of water preservation in mining and the prevention of water-bursts has been one of the more important issues in deep mining. Based on the concept of water-resisting key strata, the mechanics model of the key strata is established given the structural characteristics and the mechanical properties of the roof rock layers of the working face in a particular coal mine. Four other models were derived from this model by rearranging the order of the layers in the key strata. The distribution characteristics of stress, deformation, pore pressure and the flow vector of all the models are computed using the analytical module of fluid-structure interaction in the FLAC software and the corresponding risks of a water-burst are analyzed. The results indicate that the water-insulating ability of the key strata is related to the arrangement of soft and hard rocks. The water-insulating ability of the compound water-resisting key strata (CWKS) with a hard-hard-soft-hard-soft compounding order is the best under the five given simulated conditions.展开更多
A giant fault-controlled oilfield has been found in the ultra-deep(greater than 6000 m) Ordovician carbonate strata in the northern Tarim Basin. It is of great significance for hydrocarbon accumulation study and oil e...A giant fault-controlled oilfield has been found in the ultra-deep(greater than 6000 m) Ordovician carbonate strata in the northern Tarim Basin. It is of great significance for hydrocarbon accumulation study and oil exploitation to determine the key oil accumulation periods. Based on detailed petrographic analysis, fluid inclusion association(FIA) in calcite samples filling in fractures from 12 wells were analyzed, and key accumulation periods of the strike-slip fault-controlled oilfield was studied by combining oil generation periods of the source rocks, formation periods of the fault and traps, and the fluid inclusion data.(1) There are multiple types of FIA, among them, two types of oil inclusions, the type with yellow fluorescence from the depression area and the type with yellow-green fluorescence from the uplift area with different maturities indicate two oil charging stages.(2) The homogenization temperature of the brine inclusions in FIA is mostly affected by temperature rises, and the minimum temperature of brine inclusions symbiotic with oil inclusions is closer to the reservoir temperature during its forming period.(3) FIA with yellow fluorescence all have homogenization temperatures below 50 ℃, while the FIA with yellow-green fluorescence have homogenization temperatures of 70–90 ℃ tested, suggesting two oil accumulation stages in Middle-Late Caledonian and Late Hercynian.(4) The Middle-Late Ordovician is the key formation period of the strike-slip fault, fracture-cave reservoir and trap there.(5) The oil generation peak of the main source rock of the Lower Cambrian is in the Late Ordovician, and the oil accumulation stage is mainly the Late Ordovician in the depression area, but is mainly the Early Permian in the uplift area. The key oil accumulation period of the strike-slip fault-controlled reservoirs is the Late Caledonian, the depression area has preserved the primary oil reservoirs formed in the Caledonian, while the uplift area has secondary oil reservoirs adjusted from the depression area during the Late Hercynian. Oil reservoir preservation conditions are the key factor for oil enrichment in the strike-slip fault zone of northern Tarim, and the Aman transition zone in the depression is richer in oil and gas and has greater potential for exploration and development.展开更多
In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, p...In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.展开更多
Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distrib...Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distribution of internal forces of key strata vary with different mine boundary conditions.The boundary values of key strata with three point boundaries and one fixed boundary is greater than that with four fixed boundaries.Considering the rheology of key strata under low stress conditions,we selected a generalized Kelvin model to analyse the rheology characteristics of the key strata and discovered their instantaneous elastic phases.The rate of deformation decreased over time to the point where the key strata reached stability.But over this time,the effect on deformation became very clear. For high stress conditions,we chose a Burgers model and found deformation of key strata in the form of attenuation and steady-state creep and although the rate of deformation remained constant,secondary creep was obvious,causing instability in the system.As well,we analysed the effect of creep buckling and derived a relation between buckling force and time.展开更多
The aim of this paper is to evaluate the worldwide variation of deep and ultra-deep earthquakes (DQ and UDQ) during the period 1996-2017. This project found only three locations around the globe presenting this kind o...The aim of this paper is to evaluate the worldwide variation of deep and ultra-deep earthquakes (DQ and UDQ) during the period 1996-2017. This project found only three locations around the globe presenting this kind of seismicity. Although there are other global settings showing deep seismicity, they are not periodical and cannot be considered by a statistical view. The three areas with intense activity for DQ and UDQ events are located mostly in subduction areas. The largest variations of DQ and UDQ border the Pacific Ocean and include the North Pacific, South Pacific, and South America. The major difference in this set is that the first two sites are subduction zones and the South American occurrences happened in the interior of the continent. Another anomaly is an internal layer between 300 - 500 km in South America that shows no tremors in the period studied. However, below 500 km activity reappears, even at extreme depths of up to 650 km. We suggested that the reason for those occurrences would be due to an anomaly in the asthenosphere in this region. This anomaly would probably be presenting a breakable material that was pushed by the Nazca platform against the South America plate. Other depths below 100 km in all the regions are discussed as well. We suggested that the reason for those occurrences was an anomaly created in the asthenosphere as part of the process of the South America collision with the Nazca plate. Part of the Nazca plate has subducted below South America, creating a slab as deep as 500 km. The convergent slab is still moving against South America and sinking due to the gravity and rotation of the Earth. The discrepancies in the occurrences we tracked at different locations indicated that this slab had different thicknesses around South America. We found similar results for Vanuatu and Fiji;in these regions UDQ events occur at the subduction zones under the ocean with depths greater than 700 km. Here, a possible explanation is that part of the lithosphere is subducted at these depths and is causing tremors.展开更多
Based on in-mine instrumentation and theoretical analysis of the unsymmetrical large-deformation that occurred in the roadway after excavation,Differential Floor Heave(DFH)was found to be the main reason for roadway f...Based on in-mine instrumentation and theoretical analysis of the unsymmetrical large-deformation that occurred in the roadway after excavation,Differential Floor Heave(DFH)was found to be the main reason for roadway failure.It needs to be pointed out that the specific roadway was driven in inclined rock strata.In addition,the factors that contribute to the occurrence of DFH are discussed in detail.It is believed that DFH is triggered by the unsymmetrical stress distribution in the floor and the different rock types encountered near the two floor corners.Hence,DFH control should be focused on the left floor corner where shearing failure occurs initially and the left floor surface where tensile failure is more severe.The proposed DFH control strategies include unsymmetrical grouting for the whole roadway,re-design of the roof and ribs support,reinforcement of the weak zones,and release of the concentrated stress in the earlier stage.Meanwhile,it is recommended that in the later stage,both bolts and cable bolts with higher strength and the backfilling technique using the coal measure rocks and concrete should be employed in the reversed-arch floor.The field instrumentation results,after using the proposed control strategies,indicate that large deformation in a DFH roadway has been successfully controlled.展开更多
Based on the dividing of derormation zones of tailentry in working face and the classification of driving metbods, toking the way of field measurement, this paper fiuds out some changing regularities of main deformati...Based on the dividing of derormation zones of tailentry in working face and the classification of driving metbods, toking the way of field measurement, this paper fiuds out some changing regularities of main deformation parameters of a tailentry in 2# coal seam in Suncun Colliery with the incrcasing of mining depth, and puts forward some layout methods to protect the tailentry in deep mining.展开更多
On December 9, 2014 the scientific research project "Developmentand commercial application of technology forultra-deep HDS of diesel (RTS)" jointly performed bythe SINOPEC Research Institute of Petroleum Processin...On December 9, 2014 the scientific research project "Developmentand commercial application of technology forultra-deep HDS of diesel (RTS)" jointly performed bythe SINOPEC Research Institute of Petroleum Processing(RIPP), the Yanshan Petrochemical Branch Company(YPBC), the Maoming Petrochemical Branch Companyand the Guangzhou Petrochemical Branch Company haspassed in Beijing the technical appraisal organized by theScience and Technology Division of the Sinopec Corp.展开更多
Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristic...Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.展开更多
基金Dao-Bing Wang was supported by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.52274002)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(No.2021DQ02-0201)Fu-Jian Zhou was supported by the National Natural Science Foundation of China(No.52174045).
文摘Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
基金Supported by the Projects of National Natural Science Foundation of China(52288101,52174014,52374023)。
文摘The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.
基金Supported by the National Key R&D Program (2017YFC0603106)。
文摘By analyzing the structural background,petroleum geological conditions,and typical regional(paleo) oil and gas reservoirs in marine ultra-deep oil and gas regions in China,this paper reveals the evolution processes of the marine ultra-deep oil and gas reservoirs and the key controlling factors of accumulation.The marine ultra-deep oil and gas resources in China are buried at depth of greater than 6000 m,and are mainly distributed in the Precambrian and Lower Paleozoic strata in the Sichuan,Tarim and Ordos cratonic basins.The development of marine ultra-deep source rocks in China is controlled by cratonic rifts and cratonic depressions with the background of global supercontinent breakup-convergence cycles.The source rocks in Sichuan Basin have the most developed strata,followed by Tarim Basin,and the development strata and scale of Ordos Basin needs to be further confirmed.The marine ultra-deep reservoir in China is dominated by carbonate rocks,and the reservoir performance is controlled by high-energy sedimentary environment in the early stage,superimposed corrosion and fracture in the later stage.The regional caprocks are dominated by gypsum salt rocks,shale,and tight carbonate rock.The ultra-deep oil and gas fields in China have generally experienced two stages of oil-reservoir forming,cracking(or partial cracking) of paleo-oil reservoirs,and late finalization of cracked gas(or highly mature to over mature oil and gas).The oil and gas accumulation is controlled by static and dynamic geological elements jointly.Major hydrocarbon generation center,high quality and large-scale reservoir resulted from karstification of high energy facies belt,thick gypsum rock or shale caprock,and stable trapping and preservation conditions are the key factors for accumulation of ultra-deep oil and gas.We propose three favorable exploration directions,i.e.the areas around intracratonic rift and intracratonic depression,and craton margin.
基金Projects(41972295,U1965205)supported by the National Natural Science Foundation of ChinaProject(2019ZDK034)supported by the Guangxi Key Laboratory of Disaster Prevention and Engineering Safety,China。
文摘Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and analyze the mechanisms responsible for their occurrence.Based on the deep parallel tunnels with the maximum depth of 1890 m created as part of the Neelum–Jhelum hydropower project in Pakistan,similarities and differences on excavation-induced microseismicity and rockburst occurrence between parallel tunnels with soft and hard alternant strata are studied.Results show that a large number of microseismic(MS)events occurred in each of the parallel tunnels during excavation.Rockbursts occurred most frequently in certain local sections of the two tunnels.Significant differences are found in the excavation-induced microseismicity(spatial distribution and number of MS events,distribution of MS energy,and pattern of microseismicity variation)and rockbursts characteristics(the number and the spatial distribution)between the parallel tunnels.Attempting to predict the microseismicity and rockburst intensities likely to be encountered in subsequent tunnel based on the activity encountered when the parallel tunnel was previously excavated will not be an easy or accurate procedure in deep tunnel projects involving complex lithological conditions.
基金Projects 50490270 supported by the National Natural Science Foundation of China, 50634050 the National Natural Science Foundation of China and 2006A038 SR Foundation of China University of Mining & Technology
文摘The problem of water preservation in mining and the prevention of water-bursts has been one of the more important issues in deep mining. Based on the concept of water-resisting key strata, the mechanics model of the key strata is established given the structural characteristics and the mechanical properties of the roof rock layers of the working face in a particular coal mine. Four other models were derived from this model by rearranging the order of the layers in the key strata. The distribution characteristics of stress, deformation, pore pressure and the flow vector of all the models are computed using the analytical module of fluid-structure interaction in the FLAC software and the corresponding risks of a water-burst are analyzed. The results indicate that the water-insulating ability of the key strata is related to the arrangement of soft and hard rocks. The water-insulating ability of the compound water-resisting key strata (CWKS) with a hard-hard-soft-hard-soft compounding order is the best under the five given simulated conditions.
基金Supported by the National Natural Science Foundation of China (91955204)PetroChina-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project (2020CX010101)。
文摘A giant fault-controlled oilfield has been found in the ultra-deep(greater than 6000 m) Ordovician carbonate strata in the northern Tarim Basin. It is of great significance for hydrocarbon accumulation study and oil exploitation to determine the key oil accumulation periods. Based on detailed petrographic analysis, fluid inclusion association(FIA) in calcite samples filling in fractures from 12 wells were analyzed, and key accumulation periods of the strike-slip fault-controlled oilfield was studied by combining oil generation periods of the source rocks, formation periods of the fault and traps, and the fluid inclusion data.(1) There are multiple types of FIA, among them, two types of oil inclusions, the type with yellow fluorescence from the depression area and the type with yellow-green fluorescence from the uplift area with different maturities indicate two oil charging stages.(2) The homogenization temperature of the brine inclusions in FIA is mostly affected by temperature rises, and the minimum temperature of brine inclusions symbiotic with oil inclusions is closer to the reservoir temperature during its forming period.(3) FIA with yellow fluorescence all have homogenization temperatures below 50 ℃, while the FIA with yellow-green fluorescence have homogenization temperatures of 70–90 ℃ tested, suggesting two oil accumulation stages in Middle-Late Caledonian and Late Hercynian.(4) The Middle-Late Ordovician is the key formation period of the strike-slip fault, fracture-cave reservoir and trap there.(5) The oil generation peak of the main source rock of the Lower Cambrian is in the Late Ordovician, and the oil accumulation stage is mainly the Late Ordovician in the depression area, but is mainly the Early Permian in the uplift area. The key oil accumulation period of the strike-slip fault-controlled reservoirs is the Late Caledonian, the depression area has preserved the primary oil reservoirs formed in the Caledonian, while the uplift area has secondary oil reservoirs adjusted from the depression area during the Late Hercynian. Oil reservoir preservation conditions are the key factor for oil enrichment in the strike-slip fault zone of northern Tarim, and the Aman transition zone in the depression is richer in oil and gas and has greater potential for exploration and development.
文摘In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.
基金supported by the National Natural Science Foundation of China(No.50904065)the Program for New Century Excellent Talents in University(No.NCET-09-0728)
文摘Based on the characteristic of deep rock layers and the theory of key strata,we analysed elastic mechanical characteristics of key strata by using elastic plate theory.The results show that the deformation and distribution of internal forces of key strata vary with different mine boundary conditions.The boundary values of key strata with three point boundaries and one fixed boundary is greater than that with four fixed boundaries.Considering the rheology of key strata under low stress conditions,we selected a generalized Kelvin model to analyse the rheology characteristics of the key strata and discovered their instantaneous elastic phases.The rate of deformation decreased over time to the point where the key strata reached stability.But over this time,the effect on deformation became very clear. For high stress conditions,we chose a Burgers model and found deformation of key strata in the form of attenuation and steady-state creep and although the rate of deformation remained constant,secondary creep was obvious,causing instability in the system.As well,we analysed the effect of creep buckling and derived a relation between buckling force and time.
文摘The aim of this paper is to evaluate the worldwide variation of deep and ultra-deep earthquakes (DQ and UDQ) during the period 1996-2017. This project found only three locations around the globe presenting this kind of seismicity. Although there are other global settings showing deep seismicity, they are not periodical and cannot be considered by a statistical view. The three areas with intense activity for DQ and UDQ events are located mostly in subduction areas. The largest variations of DQ and UDQ border the Pacific Ocean and include the North Pacific, South Pacific, and South America. The major difference in this set is that the first two sites are subduction zones and the South American occurrences happened in the interior of the continent. Another anomaly is an internal layer between 300 - 500 km in South America that shows no tremors in the period studied. However, below 500 km activity reappears, even at extreme depths of up to 650 km. We suggested that the reason for those occurrences would be due to an anomaly in the asthenosphere in this region. This anomaly would probably be presenting a breakable material that was pushed by the Nazca platform against the South America plate. Other depths below 100 km in all the regions are discussed as well. We suggested that the reason for those occurrences was an anomaly created in the asthenosphere as part of the process of the South America collision with the Nazca plate. Part of the Nazca plate has subducted below South America, creating a slab as deep as 500 km. The convergent slab is still moving against South America and sinking due to the gravity and rotation of the Earth. The discrepancies in the occurrences we tracked at different locations indicated that this slab had different thicknesses around South America. We found similar results for Vanuatu and Fiji;in these regions UDQ events occur at the subduction zones under the ocean with depths greater than 700 km. Here, a possible explanation is that part of the lithosphere is subducted at these depths and is causing tremors.
基金financially supported by the National Natural Science Foundation of China (Nos.51204166 and 51174195)the Graduate Student Research Innovation Project of Ordinary University in Jiangsu Province (2013) (No.CXLX13_952)
文摘Based on in-mine instrumentation and theoretical analysis of the unsymmetrical large-deformation that occurred in the roadway after excavation,Differential Floor Heave(DFH)was found to be the main reason for roadway failure.It needs to be pointed out that the specific roadway was driven in inclined rock strata.In addition,the factors that contribute to the occurrence of DFH are discussed in detail.It is believed that DFH is triggered by the unsymmetrical stress distribution in the floor and the different rock types encountered near the two floor corners.Hence,DFH control should be focused on the left floor corner where shearing failure occurs initially and the left floor surface where tensile failure is more severe.The proposed DFH control strategies include unsymmetrical grouting for the whole roadway,re-design of the roof and ribs support,reinforcement of the weak zones,and release of the concentrated stress in the earlier stage.Meanwhile,it is recommended that in the later stage,both bolts and cable bolts with higher strength and the backfilling technique using the coal measure rocks and concrete should be employed in the reversed-arch floor.The field instrumentation results,after using the proposed control strategies,indicate that large deformation in a DFH roadway has been successfully controlled.
文摘Based on the dividing of derormation zones of tailentry in working face and the classification of driving metbods, toking the way of field measurement, this paper fiuds out some changing regularities of main deformation parameters of a tailentry in 2# coal seam in Suncun Colliery with the incrcasing of mining depth, and puts forward some layout methods to protect the tailentry in deep mining.
文摘On December 9, 2014 the scientific research project "Developmentand commercial application of technology forultra-deep HDS of diesel (RTS)" jointly performed bythe SINOPEC Research Institute of Petroleum Processing(RIPP), the Yanshan Petrochemical Branch Company(YPBC), the Maoming Petrochemical Branch Companyand the Guangzhou Petrochemical Branch Company haspassed in Beijing the technical appraisal organized by theScience and Technology Division of the Sinopec Corp.
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)supported by Excellent Doctoral Dissertation Program of China University of Petroleum
文摘Petrographic analysis combined with various techniques, such as thin section identification, petro-physical property testing, mercury penetration, oil testing results, was used to assess basic reservoir characteristics of deep strata in Palaeogene in the northern steep slope zone of the Bonan sag, China. The formation mechanisms of high quality reservoirs in deep strata were discussed according to evolution characteristics of paleopressures and paleofluids in geological period. The deep reservoirs have poor physical properties and mainly develop extra-low porosity, extra-low and ultra-low permeability reservoirs. Reservoir spaces mainly consist of secondary pores and overpressure fractures. Early overpressure, early hydrocarbon filling and dissolution by early organic acids are the major formation mechanisms of high quality reservoirs. The conglomerate in inner fan which had a poor primary physical property mainly experienced strong compaction and calcareous matrix recrystallization. The physical properties of the inner fan were poor with weak dissolution because of poor mobility of fluid. The reservoirs mainly are type IV reservoirs and the distribution extends with the burial depth. The braided channel reservoirs in the middle fan had relative good primary physical properties and strong ability to resist compaction which favored the preservation of primary pores. Large amounts of the secondary porosities were created due to dissolution by early organic acids. A series of micro-fractures generated by early overpressures would be important migration pathways for hydrocarbon and organic acids. Furthermore, early overpressures had retarded maturation of organic matters and organic acids which had flowed into reservoirs already and could keep in acid environment for a long time. This process would contribute significantly to reinforcing the dissolution and enhancing the reservoir quality. The braided channel reservoirs were charged with high oil saturation preferentially by early hydrocarbon filling which could inhibit later cementation. Therefore, the braided channel reservoirs develop a great quantity of reservoir spaces with type I, type II and type III reservoirs in the majority in the deep strata. With the burial depth, distributions of type I and type II reservoirs are narrowed and distribution of type III reservoirs decreases first and then extends. The reservoirs both in outer fan and in interdistributary of the middle fan have extremely poor physical properties because of extensive carbonate cementation. The type of the reservoirs mainly is type IV.