期刊文献+
共找到87,361篇文章
< 1 2 250 >
每页显示 20 50 100
Deformation monitoring of long-span railway bridges based on SBAS-InSAR technology
1
作者 Lv Zhou Xinyi Li +4 位作者 Yuanjin Pan Jun Ma Cheng Wang Anping Shi Yukai Chen 《Geodesy and Geodynamics》 EI CSCD 2024年第2期122-132,共11页
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ... The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges. 展开更多
关键词 SBAS-InSAR Long-span railway bridge deformation monitoring Bridge structure Time series deformation
原文传递
Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings
2
作者 王文 ZHAO Modi +2 位作者 WANG Xingfu 汪聃 韩福生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期417-424,共8页
The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improve... The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity. 展开更多
关键词 TWIP steel TWINNING mechanical property deformation mechanism MICROSTRUCTURE
原文传递
Design and fabrication of compound varifocal lens driven by polydimethylsiloxane film elastic deformation
3
作者 缪文浩 韩泽峰 +3 位作者 赵瑞 梁忠诚 寇松峰 徐荣青 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期342-346,共5页
A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave... A compound varifocal lens based on electromagnetic drive technology is designed and fabricated, where the polydimethylsiloxane(PDMS) film acts as a driving component, while the PDMS biconvex lens and the plane-concave lens form a coaxial compound lens system. The plane-concave lens equipped with driving coils is installed directly above the PDMS lens surrounded by the annular magnet. When different currents are applied, the annular magnet moves up and down, driving the PDMS film to undergo elastic deformation, and then resulting in longitudinal movement of the PDMS lens. The position change of the PDMS lens changes the focal length of the compound lens system. To verify the feasibility and practicability of this design, a prototype of our compound lens system is fabricated in experiment. Our proposed compound lens shows that its zoom ability reaches 9.28 mm when the current ranges from -0.20 A to 0.21 A. 展开更多
关键词 compound varifocal lens PDMS film elastic deformation focal length electromagnetic force zoom ability
原文传递
Deformation Characteristics of Hydrate-Bearing Sediments
4
作者 DONG Lin LI Yanlong +4 位作者 ZHANG Yajuan HU Gaowei LIAO Hualin CHEN Qiang WU Nengyou 《Journal of Ocean University of China》 CAS CSCD 2024年第1期149-156,共8页
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d... The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development. 展开更多
关键词 gas hydrate deformation characteristics volumetric strain lateral strain prediction model
下载PDF
Plastic deformation behavior of a Cu-10Ta alloy under strong impact loading
5
作者 Ping Song Jianghai Liu +1 位作者 Wenbin Li Yiming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期368-382,共15页
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu... In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure. 展开更多
关键词 Cu-10Ta SHPB Plastic deformation Flyer impact Hugoniot relationship
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation
6
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Superplasticity of fine-grained Mg-10Li alloy prepared by severe plastic deformation and understanding its deformation mechanisms
7
作者 H.T.Jeong S.W.Lee W.J.Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期316-331,共16页
The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph... The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests. 展开更多
关键词 Magnesium-lithium alloy SUPERPLASTICITY Severe plastic deformation Grain size Grain growth
下载PDF
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing
8
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 GEOSYNTHETICS Creep behavior Geosynthetics-reinforced soil(GRS)walls Lateral deformation Analytical model
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review
9
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Swelling pressure evolution characterization of strong expansive soil considering the influence of reserved expansion deformation
10
作者 LI Tianguo KONG Lingwei +1 位作者 GUO Aiguo YAN Junbiao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期252-270,共19页
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc... Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content. 展开更多
关键词 Expansive soil Swelling pressure Reserved expansion deformation Water content
原文传递
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
11
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
The effects of deformation parameters and cooling rates on the aging behavior of AZ80+0.4%Ce
12
作者 Yongbiao Yang Jinxuan Guo +6 位作者 Cuiying Wang Ting Yan Zhang Wenxuan Jiang Zhimin Zhang Qiang Wang Guojun Li Jun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期639-658,共20页
The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a... The extruded AZ80+0.4%Ce magnesium alloy was twisted in the temperature range of 300-380℃by using a Gleeble 3500 thermal simulation test machine with a torsion unit.The deformed cylindrical specimens were cooled at a cooling rate of 10℃/s or 0.1℃/s,respectively,and aged at 170℃.The microstructure analysis results showed that the grain size decreased with increasing specimen radial position from center(SRPC),and that the strong initial basal texture of the extruded magnesium alloy was weakened.Both continuous and discontinuous dynamic recrystallization mechanisms were involved in contributing to the grain refinement for all specimens investigated.And a novel extension twinning induced dynamic recrystallization mechanism was proposed for specimen deformed at 300℃.For the specimens deformed at 300℃and 340℃followed by a slow cooling rate(0.1℃/s),precipitates of various shapes(β-Mg_(17)Al_(12)),with the dominant precipitates being on the grains boundaries,appeared on the surface section.For specimen deformed at 380℃,lamellar precipitates(LPS)in the interiors of the grains were predominant.After aging,the LPS still dominated for specimens twisted at 380℃;however,the LPS gradually decreased with decreasing deformation temperatures from 380℃to 300℃.Dynamically precipitatedβ,especially those decorating the grain boundaries,changed the competition pictures for the LPS and precipitates of other shapes after aging.Interestingly,LPS dominated the areas for the center section of the specimens after aging regardless of deformation temperatures.Low temperature deformation with high SRPC followed by rapid cooling rate increased the micro hardness of the alloy after aging due to refined grain,reduced precipitates size,decreased lamellar spacing as well as strain hardening. 展开更多
关键词 AZ80+0.4%Ce magnesium alloy Hot torsion deformation parameters Cooling rate Aging Micro hardness
下载PDF
High temperature deformation and recrystallization behavior of magnesium bicrystals with 90°<1010>and 90°<1120>tilt grain boundaries
13
作者 Kevin Bissa Talal Al-Samman Dmitri A.Molodov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期625-638,共14页
The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated un... The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature. 展开更多
关键词 Elevated deformation temperatures Plain strain compression Magnesium bicrystals Panorama EBSD Dynamic Recrystallization
下载PDF
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
14
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
An improved strain-softening constitutive model of granite considering the effect of crack deformation
15
作者 Yapeng Li Qiang Zhang +2 位作者 Qiuxin Gu Peinan Wu Binsong Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1202-1215,共14页
This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str... This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite. 展开更多
关键词 STRAIN-SOFTENING Crack deformation effect Plastic shear strain Constitutive model
下载PDF
Anisotropic strength,deformation and failure of gneiss granite under high stress and temperature coupled true triaxial compression
16
作者 Hongyuan Zhou Zaobao Liu +2 位作者 Fengjiao Liu Jianfu Shao Guoliang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期860-876,共17页
The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted ... The anisotropic mechanical behavior of rocks under high-stress and high-temperature coupled conditions is crucial for analyzing the stability of surrounding rocks in deep underground engineering.This paper is devoted to studying the anisotropic strength,deformation and failure behavior of gneiss granite from the deep boreholes of a railway tunnel that suffers from high tectonic stress and ground temperature in the eastern tectonic knot in the Tibet Plateau.High-temperature true triaxial compression tests are performed on the samples using a self-developed testing device with five different loading directions and three temperature values that are representative of the geological conditions of the deep underground tunnels in the region.Effect of temperature and loading direction on the strength,elastic modulus,Poisson’s ratio,and failure mode are analyzed.The method for quantitative identification of anisotropic failure is also proposed.The anisotropic mechanical behaviors of the gneiss granite are very sensitive to the changes in loading direction and temperature under true triaxial compression,and the high temperature seems to weaken the inherent anisotropy and stress-induced deformation anisotropy.The strength and deformation show obvious thermal degradation at 200℃due to the weakening of friction between failure surfaces and the transition of the failure pattern in rock grains.In the range of 25℃ 200℃,the failure is mainly governed by the loading direction due to the inherent anisotropy.This study is helpful to the in-depth understanding of the thermal-mechanical behavior of anisotropic rocks in deep underground projects. 展开更多
关键词 Anisotropic strength and deformation True triaxial compression Thermal mechanical coupling Deep rock mechanics High temperature rock mechanics
下载PDF
Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method
17
作者 Weida Wu Yiqiang Wang +1 位作者 Zhonghao Gao Pai Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2001-2026,共26页
Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching... Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy. 展开更多
关键词 Topology optimization microstructural design negative Poisson’s ratio large deformation
下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
18
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
19
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
原文传递
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids with Rheology
20
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2024年第1期108-168,共61页
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ... This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon. 展开更多
关键词 THERMOVISCOELASTICITY RHEOLOGY Memory Finite Strain Finite deformation Nonlinear Dynamics Dynamic Bifurcation Ordered Rate Theories
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部