期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Novel approach for real-time monitoring of carrier-based DPIs delivery process via pulmonary route based on modular modified Sympatec HELOS 被引量:4
1
作者 Xuejuan Zhang Yingtong Cui +8 位作者 Ruifeng Liang Guanlin Wang Xiao Yue Ziyu Zhao Zhengwei Huang Ying Huang Jianfang Geng Xin Pan Chuanbin Wu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2020年第7期1331-1346,共16页
An explicit illustration of pulmonary delivery processes(PDPs)was a prerequisite for the formulation design and optimization of carrier-based DPIs.However,the current evaluation approaches for DPIs could not provide p... An explicit illustration of pulmonary delivery processes(PDPs)was a prerequisite for the formulation design and optimization of carrier-based DPIs.However,the current evaluation approaches for DPIs could not provide precise investigation of each PDP separately,or the approaches merely used a simplified and idealized model.In the present study,a novel modular modified Sympatec HELOS Real-time monitoring;Modular modification;Carrier;Air flow rate;Mechanism of drug delivery(MMSH)was developed to fully investigate the mechanism of each PDP separately in real-time.An inhaler device,artificial throat and pre-separator were separately integrated with a Sympatec HELOS.The dispersion and fluidization,transportation,detachment and deposition processes of pulmonary delivery for model DPIs were explored under different flow rates.Moreover,time-sliced measurements were used to monitor the PDPs in real-time.The Next Generation Impactor(NGI)was applied to determine the aerosolization performance of the model DPIs.The release profiles of the drug particles,drug aggregations and carriers were obtained by MMSH in real-time.Each PDP of the DPIs was analyzed in detail.Moreover,a positive correlation was established between the total release amount of drug particles and the fine particle fraction(FPF)values(R^2=0.9898).The innovative MMSH was successfully developed and was capable of illustrating the PDPs and the mechanism of carrier-based DPIs,providing a theoretical basis for the design and optimization of carrier-based DPIs. 展开更多
关键词 Dry powder inhalation Pulmonary delivery process
原文传递
Service Networks Topological Design
2
作者 Boris S. Verkhovsky 《International Journal of Communications, Network and System Sciences》 2010年第11期850-854,共5页
Topological design of service networks is studied in the paper. Quantitative model and algorithm minimizing cost of processing and delivery is described. Algorithm solving combinatorial problem of optimal design based... Topological design of service networks is studied in the paper. Quantitative model and algorithm minimizing cost of processing and delivery is described. Algorithm solving combinatorial problem of optimal design based on binary partitioning, a parametric search and dynamic programming optimization of a binary tree is described and demonstrated in numeric example. 展开更多
关键词 delivery/processing Cost Binary Partitioning Dynamic PROGRAMMING First RESPONDERS AVERAGE Complexity Service PROVIDER Water DESALINATION
下载PDF
A real-time and modular approach for quick detection and mechanism exploration of DPIs with different carrier particle sizes 被引量:1
3
作者 Yingtong Cui Ying Huang +8 位作者 Xuejuan Zhang Xiangyun Lu Jun Xue Guanlin Wang Ping Hu Xiao Yue Ziyu Zhao Xin Pan Chuanbin Wu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第1期437-450,共14页
Dry powder inhalers(DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary deliv... Dry powder inhalers(DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary delivery processes(PDPs) hindered the development of DPIs. Most current evaluation methods explored the PDPs with over-simplified models, leading to uncompleted investigations of the whole or partial PDPs. In the present research, an innovative modular process analysis platform(MPAP) was applied to investigate the detailed mechanisms of each PDP of DPIs with different carrier particle sizes(CPS). The MPAP was composed of a laser particle size analyzer, an inhaler device,an artificial throat and a pre-separator, to investigate the fluidization and dispersion, transportation,detachment and deposition process of DPIs. The release profiles of drug, drug aggregation and carrier were monitored in real-time. The influence of CPS on PDPs and corresponding mechanisms were explored. The powder properties of the carriers were investigated by the optical profiler and Freeman Technology four powder rheometer. The next generation impactor was employed to explore the aerosolization performance of DPIs. The novel MPAP was successfully applied in exploring the comprehensive mechanism of PDPs, which had enormous potential to be used to investigate and develop DPIs. 展开更多
关键词 Dry powder inhaler Carrier particle size Pulmonary delivery process Real-time monitor Quick detection
原文传递
Shale gas reservoirs: Theoretical, practical and research issues
4
作者 Roberto Aguilera 《Petroleum Research》 2016年第1期10-26,共17页
Shale gas reservoirs are found all over the world.Their endowment worldwide is estimated at 10,000 tcf by the GFREE team in the Schulich School of Engineering at the University of Calgary.The shale gas work and produc... Shale gas reservoirs are found all over the world.Their endowment worldwide is estimated at 10,000 tcf by the GFREE team in the Schulich School of Engineering at the University of Calgary.The shale gas work and production initiated successfully in the Unites States and extended to Canada will have application,with modifications,in several other countries in the future.The‘modifications’qualifier is important as each shale gas reservoir should be considered as a research project by itself to avoid fiascos and major financial losses.Shale gas reservoirs are best represented by at least quadruple porosity models.Some of the production obtained from shale reservoirs is dominated by diffusion flow.The approximate boundary between viscous and diffusion-like flow is estimated with Knudsen number.Viscous flow is present,for example,when the architecture of the rock is dominated by mega pore throat,macro pore throat,meso pore throat and sometimes micro pore throat.Diffusion flow on the other hand is observed at the nano pore throat level.The process speed concept has been used successfully in conventional reservoirs for several decades.However,the concept discussed in this paper for tight gas and shale gas reservoirs,with the support of core data,has been developed only recently,and permits differentiating between viscous and diffusion dominated flow.This is valuable,for example,in those cases where the formation to be developed is composed of alternating stacked layers of tight sands and shales,or where there are lateral variations due to facies changes.An approach to develop the concept of a super-giant shale gas reservoir is presented as well as a description of GFREE,a successful research program for tight formations.The paper closes with examples of detailed original gas-in-place(OGIP)calculations for 3 North American shale gas reservoirs including free gas in natural fractures and the porous network within the organic matter,gas in the non-organic matter,adsorbed gas,and estimates of free gas within fractures created during hydraulic fracturing jobs.The examples show that the amount of free gas in shale reservoirs,as a percent of the total OGIP,is probably larger than considered previously in the literature. 展开更多
关键词 shale gas reservoirs process or delivery speed quadruple porosity model Knudsen number pore throat level
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部