期刊文献+
共找到651篇文章
< 1 2 33 >
每页显示 20 50 100
Conditioned medium from human dental pulp stem cells treats spinal cord injury by inhibiting microglial pyroptosis
1
作者 Tao Liu Ziqian Ma +8 位作者 Liang Liu Yilun Pei Qichao Wu Songjie Xu Yadong Liu Nan Ding Yun Guan Yan Zhang Xueming Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1105-1111,共7页
Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery... Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury.However,whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear.In the present study,we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells.We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury,decreased expression of the microglial pyroptosis markers NLRP3,GSDMD,caspase-1,and interleukin-1β,promoted axonal and myelin regeneration,and inhibited the formation of glial scars.In addition,in a lipopolysaccharide-induced BV2 microglia model,conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway.These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1βpathway,thereby promoting the recovery of neurological function after spinal cord injury.Therefore,conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury. 展开更多
关键词 BV2 conditioned medium dental pulp stem cells GSDMD MICROGLIA NEUROINFLAMMATION NLRP3 PYROPTOSIS spinal cord injury
下载PDF
Genetic modification of miR-34a enhances efficacy of transplanted human dental pulp stem cells after ischemic stroke 被引量:1
2
作者 Jianfeng Wang Peibang He +7 位作者 Qi Tian Yu Luo Yan He Chengli Liu Pian Gong Yujia Guo Qingsong Ye Mingchang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2029-2036,共8页
Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we use... Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we used oxygen-glucose deprivation/reoxygenation in hDPSCs to mimic cell damage induced by ischemia/reperfusion.We found that miRNA-34a-5p(miR-34a) was elevated under oxygen-glucose deprivation/reoxygenation conditions in hDPSCs.Inhibition of miR-34a facilitated the prolife ration and antioxidant capacity and reduced the apoptosis of hDPSCs.Moreove r,dual-luciferase reporter gene assay showed WNT1and SIRT1 as the targets of miR-34a.In miR-34a knockdown cell lines,WNT1 suppression reduced cell prolife ration,and SIRT1 suppression decreased the antioxidant capacity.Togethe r,these results indicated that miR-34a regulates cell prolife ration and antioxidant stress via targeting WNT1 and SIRT1,respectively.For in vivo expe riments,we injected genetically modified hDPSCs(anti34a-hDPSCs) into the brains of mice.We found that anti34a-hDPSCs significantly inhibited apoptosis,reduced cerebral edema and cerebral infarct volume,and improved motor function in mice.This study provides new insights into the molecular mechanism of the cell prolife ration and antioxidant capacity of hDPSCs,and suggests a potential gene that can be targeted to improve the survival rate and efficacy of transplanted hDPSCs in brain after ischemic stroke. 展开更多
关键词 antioxidant capacity HO-1 human dental pulp stem cells ischemic stroke MIR-34A Nrf2 PROLIFERATION SIRT1 WNT1 β-catenin
下载PDF
Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications
3
作者 Wen-Bo Xing Shu-Ting Wu +5 位作者 Xin-Xin Wang Fen-Yao Li Ruo-Xuan Wang Ji-Hui He Jiao Fu Yan He 《World Journal of Stem Cells》 SCIE 2023年第10期960-978,共19页
Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DP... Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research. 展开更多
关键词 dental pulp stem cells Peripheral nerve injury Regenerative medicine Neural regeneration Schwann cells stem cells engineering
下载PDF
Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics 被引量:7
4
作者 Ying Liu Lu Gan +4 位作者 Di-Xin Cui Si-Han Yu Yue Pan Li-Wei Zheng Mian Wan 《World Journal of Stem Cells》 SCIE 2021年第11期1647-1666,共20页
Regenerative endodontics(RE)therapy means physiologically replacing damaged pulp tissue and regaining functional dentin–pulp complex.Current clinical RE procedures recruit endogenous stem cells from the apical papill... Regenerative endodontics(RE)therapy means physiologically replacing damaged pulp tissue and regaining functional dentin–pulp complex.Current clinical RE procedures recruit endogenous stem cells from the apical papilla,periodontal tissue,bone marrow and peripheral blood,with or without application of scaffolds and growth factors in the root canal space,resulting in cementum-like and bone-like tissue formation.Without the involvement of dental pulp stem cells(DPSCs),it is unlikely that functional pulp regeneration can be achieved,even though acceptable repair can be acquired.DPSCs,due to their specific odontogenic potential,high proliferation,neurovascular property,and easy accessibility,are considered as the most eligible cell source for dentin–pulp regeneration.The regenerative potential of DPSCs has been demonstrated by recent clinical progress.DPSC transplantation following pulpectomy has successfully reconstructed neurovascularized pulp that simulates the physiological structure of natural pulp.The self-renewal,proliferation,and odontogenic differentiation of DPSCs are under the control of a cascade of transcription factors.Over recent decades,epigenetic modulations implicating histone modifications,DNA methylation,and noncoding(nc)RNAs have manifested as a new layer of gene regulation.These modulations exhibit a profound effect on the cellular activities of DPSCs.In this review,we offer an overview about epigenetic regulation of the fate of DPSCs;in particular,on the proliferation,odontogenic differentiation,angiogenesis,and neurogenesis.We emphasize recent discoveries of epigenetic molecules that can alter DPSC status and promote pulp regeneration through manipulation over epigenetic profiles. 展开更多
关键词 dental pulp stem cells Regenerative endodontics Epigenetic regulation Noncoding RNAs Histone deacetylase inhibitor DNA methyltransferase inhibitor
下载PDF
Neurotrophic effects of dental pulp stem cells in repair of peripheral nerve after crush injury 被引量:6
5
作者 Dian-Ri Wang Yu-Hao Wang +1 位作者 Jian Pan Wei-Dong Tian 《World Journal of Stem Cells》 SCIE CAS 2020年第10期1196-1213,共18页
BACKGROUND Nerve diseases and injuries,which are usually accompanied by motor or sensory dysfunction and disorder,impose a heavy burden upon patients and greatly reduce their quality of life.Dental pulp stem cells(DPS... BACKGROUND Nerve diseases and injuries,which are usually accompanied by motor or sensory dysfunction and disorder,impose a heavy burden upon patients and greatly reduce their quality of life.Dental pulp stem cells(DPSCs),derived from the neural crest,have many characteristics that are similar to those of neural cells,indicating that they can be an ideal source for neural repair.AIM To explore the potential roles and molecular mechanisms of DPSCs in crushed nerve recovery.METHODS DPSCs were isolated,cultured,and identified by multilineage differentiation and flow cytometry.Western blot and immunofluorescent staining were applied to analyze the expression levels of neurotrophic proteins in DPSCs after neural induction.Then,we collected the secretions of DPSCs.We analyzed their effects on RSC96 cell proliferation and migration by CCK8 and transwell assays.Finally,we generated a sciatic nerve crush injury model in vivo and used the sciatic function index,walking track analysis,muscle weight,and hematoxylin&eosin(H&E)staining to further evaluate the nerve repair ability of DPSCs.RESULTS DPSCs highly expressed several specific neural markers,including GFAP,S100,Nestin,P75,and NF200,and were inclined toward neural differentiation.Furthermore,neural-induced DPSCs(N-DPSCs)could express neurotrophic factors,including NGF,BDNF,and GDNF.The secretions of N-DPSCs could enhance the proliferation and migration of Schwann cells.In vivo,both DPSC and N-DPSC implants alleviated gastrocnemius muscle atrophy.However,in terms of anatomy and motor function,as shown by H&E staining,immunofluorescent staining,and walking track analyses,the repair effects of N-DPSCs were more sustained,potent,and effective than those of DPSCs and the controls.CONCLUSION In summary,this study demonstrated that DPSCs are inclined to differentiate into neural cells.N-DPSCs express neurotrophic proteins that could enhance the proliferation and migration of SCs.Furthermore,our results suggested that NDPSCs could help crushed nerves with functional recovery and anatomical repair in vivo.Thus,DPSCs or N-DPSCs could be a promising therapeutic cell source for peripheral nerve repair and regeneration. 展开更多
关键词 dental pulp stem cells Nerve repair Nerve regeneration Neurotrophic effects
下载PDF
Therapeutic potential of dental pulp stem cell transplantation in a rat model of Alzheimer’s disease 被引量:3
6
作者 Xue-Mei Zhang Yuan-Jiao Ouyang +12 位作者 Bing-Qian Yu Wei Li Mei-Yu Yu Jin-Yue Li Zhuo-Min Jiao Dan Yang Na Li Ying Shi Yun-Yun Xu Zhi-Jun He Duo Wang Hui Yue Jin Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第5期893-898,共6页
Dental pulp stem cells are dental pulp-derived mesenchymal stem cells that originate from the neural crest.They exhibit greater potential for the treatment of nervous system diseases than other types of stem cells bec... Dental pulp stem cells are dental pulp-derived mesenchymal stem cells that originate from the neural crest.They exhibit greater potential for the treatment of nervous system diseases than other types of stem cells because of their neurogenic differentiation capability and their ability to secrete multiple neurotrophic factors.Few studies have reported Alzheimer’s disease treatment using dental pulp stem cells.Rat models of Alzheimer’s disease were established by injecting amyloid-β1–42 into the hippocampus.Fourteen days later,5×106 dental pulp stem cells were injected into the hippocampus.Immunohistochemistry and western blot assays showed that dental pulp stem cell transplantation increased the expression of neuron-related doublecortin,NeuN,and neurofilament 200 in the hippocampus,while the expression of amyloid-βwas decreased.Moreover,cognitive and behavioral abilities were improved.These findings indicate that dental pulp stem cell transplantation in rats can improve cognitive function by regulating the secretion of neuron-related proteins,which indicates a potential therapeutic effect for Alzheimer’s disease.This study was approved by the Animal Ethics Committee of Harbin Medical University,China(approval No.KY2017-132)on February 21,2017. 展开更多
关键词 Alzheimer’s disease brain central nervous system dental pulp stem cell in vivo model RAT stem cells TRANSPLANTATION
下载PDF
Therapeutic effects of dental pulp stem cells on vascular dementia in rat models 被引量:3
7
作者 Xue-Mei Zhang Yang Sun +9 位作者 Ying-Lian Zhou Zhuo-Min Jiao Dan Yang Yuan-Jiao Ouyang Mei-Yu Yu Jin-Yue Li Wei Li Duo Wang Hui Yue Jin Fu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第8期1645-1651,共7页
Dental pulp stem cells are a type of adult stem cells with strong proliferative ability and multi-differentiation potential. There are no studies on treatment of vascular dementia with dental pulp stem cells. In the p... Dental pulp stem cells are a type of adult stem cells with strong proliferative ability and multi-differentiation potential. There are no studies on treatment of vascular dementia with dental pulp stem cells. In the present study, rat models of vascular dementia were established by two-vessel occlusion, and 30 days later, rats were injected with 2 × 10^(7) dental pulp stem cells via the tail vein. At 70 days after vascular dementia induction, dental pulp stem cells had migrated to the brain tissue of rat vascular dementia models and differentiated into neuronlike cells. At the same time, doublecortin, neurofilament 200, and Neu N m RNA and protein expression levels in the brain tissue were increased, and glial fibrillary acidic protein m RNA and protein expression levels were decreased. Behavioral testing also revealed that dental pulp stem cell transplantation improved the cognitive function of rat vascular dementia models. These findings suggest that dental pulp stem cell transplantation is effective in treating vascular dementia possibly through a paracrine mechanism. The study was approved by the Animal Ethics Committee of Harbin Medical University(approval No. KY2017-132) in 2017. 展开更多
关键词 animal model dental pulp stem cells PARACRINE REPAIR stem cells TRANSPLANTATION vascular dementia
下载PDF
Dental pulp stem cells stimulate neuronal differentiation of PC12 cells 被引量:3
8
作者 Nessma Sultan Laila E.Amin +2 位作者 Ahmed R.Zaher Mohammed E.Grawish Ben A.Scheven 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第9期1821-1828,共8页
Dental pulp stem cells(DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium(DPSCs-CM) was co... Dental pulp stem cells(DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium(DPSCs-CM) was collected from 72 hours serum-free DPSCs cultures. The impact of DPSCs-derived factors on PC12 survival, growth, migration and differentiation was investigated. PC12 cells were treated with nerve growth factor(NGF), DPSCs-CM or co-cultured with DPSCs using Transwell inserts for 8 days. The number of surviving cells with neurite outgrowths and the length of neurites were measured by image analysis. Immunocytochemical staining was used to evaluate the expression of neuronal markers NeuN, microtubule associated protein 2(MAP-2) and cytoskeletal marker βIII-tubulin. Gene expression levels of axonal growth-associated protein 43 and synaptic protein Synapsin-I, NeuN, MAP-2 and βIII-tubulin were analysed by quantitative polymerase chain reaction(qRT-PCR). DPSCs-CM was analysed for the neurotrophic factors(NGF, brain-derived neurotrophic factor [BDNF], neurotrophin-3, and glial cell-derived neurotrophic factor [GDNF]) by specific ELISAs. Specific neutralizing antibodies against the detected neurotrophic factors were used to study their exact role on PC12 neuronal survival and neurite outgrowth extension. DPSCs-CM significantly promoted cell survival and induced the neurite outgrowth confirmed by NeuN, MAP-2 and βIII-tubulin immunostaining. Furthermore, DPSCsCM was significantly more effective in stimulating PC12 neurite outgrowths than live DPSCs/PC12 co-cultures over the time studied. The morphology of induced PC12 cells in DPSCs-CM was similar to NGF positive controls;however, DPSCs-CM stimulation of cell survival was significantly higher than what was seen in NGF-treated cultures. The number of surviving PC12 cells treated with DPSCs-CM was markedly reduced by the addition of anti-GDNF, whilst PC12 neurite outgrowth was significantly attenuated by anti-NGF, anti-GDNF and anti-BDNF antibodies. These findings demonstrated that DPSCs were able to promote PC12 survival and differentiation. DPSCs-derived NGF, BDNF and GDNF were involved in the stimulatory action on neurite outgrowth, whereas GDNF also had a significant role in promoting PC12 survival. DPSCs-derived factors may be harnessed as a cell-free therapy for peripheral nerve repair. All experiments were conducted on dead animals that were not sacrificed for the purpose of the study. All the methods were carried out in accordance with Birmingham University guidelines and regulations and the ethical approval is not needed. 展开更多
关键词 brain-derived neurotrophic factor conditioned medium dental pulp stem cell glial cell line-derived nerve growth factor neurite outgrowth neurotrophic factor NEUROTROPHIN-3 phaeochromocytoma PC12 cell
下载PDF
Therapeutic potential of dental pulp stem cells and their derivatives:Insights from basic research toward clinical applications 被引量:1
9
作者 Sheng-Meng Yuan Xue-Ting Yang +2 位作者 Si-Yuan Zhang Wei-Dong Tian Bo Yang 《World Journal of Stem Cells》 SCIE 2022年第7期435-452,共18页
For more than 20 years,researchers have isolated and identified postnatal dental pulp stem cells(DPSCs)from different teeth,including natal teeth,exfoliated deciduous teeth,healthy teeth,and diseased teeth.Their mesen... For more than 20 years,researchers have isolated and identified postnatal dental pulp stem cells(DPSCs)from different teeth,including natal teeth,exfoliated deciduous teeth,healthy teeth,and diseased teeth.Their mesenchymal stem cell(MSC)-like immunophenotypic characteristics,high proliferation rate,potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs.In addition,several main application forms of DPSCs and their derivatives have been investigated,including stem cell injections,modified stem cells,stem cell sheets and stem cell spheroids.In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs.Therefore,DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration.In this review,we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine.We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions.The methodologies for therapeutic administration of DPSCs and their derivatives are introduced,including single injections and the transplantation of the cells with a support,as cell sheets,or as cell spheroids.We also summarize the underlying mechanisms of the regenerative potential of DPSCs. 展开更多
关键词 dental pulp stem cells cell injections Modified cells cell sheets cell spheroids REGENERATION
下载PDF
Identification and Isolation of Human Dental Pulp Stem Cells
10
作者 Xue-Chao YANG Ming-Wen FAN(Ministry Education Key Lab. For Oral Biomedical Engineering, Shool of Stomatology, Wuhan University,Wuhan 430079,China) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期101-102,共2页
关键词 cell DPSCs Identification and Isolation of Human dental pulp stem cells DSPP
下载PDF
Therapeutic applications of dental pulp stem cells in regenerating dental,periodontal and oral-related structures
11
作者 Mohammed E Grawish Mahmoud A Saeed +1 位作者 Nessma Sultan Ben A Scheven 《World Journal of Meta-Analysis》 2021年第2期176-192,共17页
Dental pulp stem cells (DPSCs) have emerged as a promising tool with greatpotential for use in tissue regeneration and engineering. Some of the mainadvantages of these cells are their multifaceted differentiation capa... Dental pulp stem cells (DPSCs) have emerged as a promising tool with greatpotential for use in tissue regeneration and engineering. Some of the mainadvantages of these cells are their multifaceted differentiation capacity, along withtheir high proliferation rate, a relative simplicity of extraction and culture thatenables obtaining patient-specific cell lines for their use in autologous celltherapy. PubMed, Scopus and Google Scholar databases were searched forrelevant articles related to the use of DPSCs in regeneration of dentin-pulpcomplex (DPC), periodontal tissues, salivary gland and craniomaxillofacial bonedefects. Few studies were found regarding the use of DPSCs for regeneration ofDPC. Scaffold-based combined with DPSCs isolated from healthy pulps was thestrategy used for DPC regeneration. Studies involved subcutaneous implantationof scaffolds loaded with DPSCs pretreated with odontogenic media, or performedon human tooth root model as a root slice. Most of the studies were related toperiodontal tissue regeneration which mainly utilized DPSCs/secretome. Forperiodontal tissues, DPSCs or their secretome were isolated from healthy orinflamed pulps and they were used either for preclinical or clinical studies.Regarding salivary gland regeneration, the submandibular gland was the onlymodel used for the preclinical studies and DPSCs or their secretome were isolatedonly from healthy pulps and they were used in preclinical studies. Likewise,DPSCs have been studied for craniomaxillofacial bone defects in the form ofmandibular, calvarial and craniofacial bone defects where DPSCs were isolatedonly from healthy pulps for preclinical and clinical studies. From the previousresults, we can conclude that DPSCs is promising candidate for dental and oraltissue regeneration. 展开更多
关键词 dental pulp stem cells Dentin-pulp complex Periodontal tissues Salivary glands cell-based therapy cell-free therapy
下载PDF
Dental Pulp Stem Cells, a New Era in Regenerative Medicine: A Literature Review
12
作者 Manar Aljamie Lujain Alessa +1 位作者 Rawan Noah Lubna Elsayed 《Open Journal of Stomatology》 2016年第6期155-163,共9页
Objectives: The aim of this review is to explain the role of Dental Pulp Stem Cells (DPSCs) in repairing or regenerating damaged tissue/organs for both systemic and oral diseases and, in addition, review the different... Objectives: The aim of this review is to explain the role of Dental Pulp Stem Cells (DPSCs) in repairing or regenerating damaged tissue/organs for both systemic and oral diseases and, in addition, review the differentiation, isolation of dental pulp stem cells and their applications in regenerative medicine. Materials and Methods: An electronic search was done using Cohchrane, PubMed and Google Scholar. Out of 310 articles, only 25 articles have been selected to be included in this review because it is directly related to the topic and they are matching the inclusion criteria of this review: “Language: English” and “Year: 2006-2016”. Results: DPSCs have been widely used as a mesenchymal stem cells source due to easy accessibility and less invasive harvesting. DPSCs could be used for pulpal regeneration, tooth reconstruction, endocrinology, neurology, angiogenesis and vasculogenises. The most common application of DPSCs in the dental field is pulp regeneration. Conclusion: Stem cell-based therapy holds a great promise to solve health problems from both systemic and oral diseases. Studying in DPSCs grows rapidly;however, there are still questionable issues needed to be optimized and answered such as the variable biological capacity of DPSCs. 展开更多
关键词 stem cells dental pulp stem cells Regenerative Medicine
下载PDF
Human dental pulp stem cells: Applications in future regenerative medicine 被引量:18
13
作者 Pravin D Potdar Yogita D Jethmalani 《World Journal of Stem Cells》 SCIE CAS 2015年第5期839-851,共13页
Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells(MSCs) from various human tissues,peripheral blood... Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells(MSCs) from various human tissues,peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells(DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. 展开更多
关键词 Human dental pulp stem cellS Mesenchymalstem cellS DENTIN PLURIPOTENCY stem cell therapy Molecular MARKERS
下载PDF
Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue 被引量:4
14
作者 Yu-Ying Chen Sheng-Teng He +5 位作者 Fu-Hua Yan Peng-Fei Zhou Kai Luo Yan-Ding Zhang Yin Xiao Min-Kui Lin 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第4期213-222,共10页
Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells(DPSCs) for potential application in tendon tissue engineer... Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells(DPSCs) for potential application in tendon tissue engineering. The expression of tendonrelated markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid(PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue. 展开更多
关键词 牙髓干细胞 组织工程 细胞来源 标志物 肌腱 机械负荷 间充质干细胞 细胞谱系
下载PDF
Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation 被引量:5
15
作者 Arash Khojasteh Saeed Reza Motamedian +2 位作者 Maryam Rezai Rad Mehrnoosh Hasan Shahriari Nasser Nadjmi 《World Journal of Stem Cells》 SCIE CAS 2015年第10期1215-1221,共7页
AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells(h DPSCs) on four commercially available scaffold biomaterials. METHODS: hD PSCs were isolated from human dental pulp tissues... AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells(h DPSCs) on four commercially available scaffold biomaterials. METHODS: hD PSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. h DPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureO ss(Allograft), Cerabone(Xenograft), PLLA(Synthetic), and OSTEON Ⅱ Collagen(Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy(SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase(ALP) activity assay, respectively. RESULTS: All scaffold biomaterials except Sure Oss(Allograft) supported h DPSC adhesion, proliferation and differentiation. hD PSCs seeded on PLLA(Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hD PSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA(Synthetic) and OSTEON ⅡCollagen(Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone(Xenograft) and OSTEON Ⅱ Collagen(Composite) scaffolds, the h DPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape. CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hD PSCs. Hence, it may be useful in combination with hD PSCs for cell-based reconstructive therapy. 展开更多
关键词 Human dental pulp stem cell stem cell Tissue engin
下载PDF
Multilineage Differentiation of Dental Pulp Stem Cells from Green Fluorescent Protein Transgenic Mice 被引量:5
16
作者 Brian E.Grottkau P.Prasad Purudappa 《International Journal of Oral Science》 SCIE CAS CSCD 2010年第1期21-27,共7页
Aim The aim of this study was to confirm the multilineage differentiation ability of dental pulp stem cells (DPSCs) from green fluorescent protein (GFP) transgenic mice. The expression of GFP in DPSCs was also observe... Aim The aim of this study was to confirm the multilineage differentiation ability of dental pulp stem cells (DPSCs) from green fluorescent protein (GFP) transgenic mice. The expression of GFP in DPSCs was also observed during differentiation. Methodology DPSCs were harvested from the dental pulp tissue of transgenic nude mice, and then transferred to osteogenic, adipogenic, and chondrogenic media. The morphological characterization of induced cells was observed by microscopy and histological staining. The expression of marker genes was measured by RT-PCR. Results The endogenous GFP and multilineage potential of transgenic DPSCs had no influence on each other. Moreover, the results of fluorescence microscopic imaging suggest that there was no significant decline of GFP expression during DPSCs differentiation. Conclusion As the population of GFP labeled DPSCs can be easily identified, this will be a promising method for tracking DPSCs in vivo. 展开更多
关键词 口腔科学 GFP 牙齿 临床
下载PDF
p75 neurotrophin receptor positive dental pulp stem cells:new hope for patients with neurodegenerative disease and neural injury 被引量:3
17
作者 DAI Jie-wen YUAN Hao +5 位作者 SHEN Shun-yao LU Jing-ting ZHU Xiao-fang YANG Tong ZHANG Jiang-fei SHEN Guo-fang 《上海口腔医学》 CAS CSCD 北大核心 2013年第4期469-472,共4页
Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation.Cell based treatment for these diseases had gained special... Neurodegenerative diseases and neural injury are 2 of the most feared disorders that afflict humankind by leading to permanent paralysis and loss of sensation.Cell based treatment for these diseases had gained special interest in recent years.Previous studies showed that dental pulp stem cells(DPSCs) could differentiate toward functionally active neurons both in vitro and in vivo,and could promote neuranagenesis through both cell-autonomous and paracrine neuroregenerative activities.Some of these neuroregenerative activities were unique to tooth-derived stem cells and superior to bone marrow stromal cells.However,DPSCs used in most of these studies were mixed and unfractionated dental pulp cells that contain several types of cells,and most were fibroblast cells while just contain a small portion of DPSCs.Thus,there might be weaker ability of neuranagenesis and more side effects from the fibroblast cells that cannot differentiate into neural cells.p75 neurotrophin receptor(p75 NTR) positive DPSCs subpopulation was derived from migrating cranial neural crest cells and had been isolated from DPSCs,which had capacity of differentiation into neurons and repairing neural system.In this article,we hypothesize that p75 NTR positive DPSCs simultaneously have greater propensity for neuronal differentiation and fewer side effects from fibroblast,and in vivo transptantation of autologous p75 NTR positive DPSCs is a novel method for neuranagenesis.This will bring great hope to patients with neurodegenerative disease and neural injury.Supported by Key Basic Research Fund of Science and Technology Commission of Shanghai Municipality(10JC1408700). 展开更多
关键词 口腔科学 口腔疾病 临床 预防
原文传递
Regenerative medicine using dental pulp stem cells for liver diseases 被引量:2
18
作者 Shogo Ohkoshi Hajime Hara +2 位作者 Haruka Hirono Kazuhiko Watanabe Katsuhiko Hasegawa 《World Journal of Gastrointestinal Pharmacology and Therapeutics》 CAS 2017年第1期1-6,共6页
Acute liver failure is a refractory disease and its pro-gnosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a c... Acute liver failure is a refractory disease and its pro-gnosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells(MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti--inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review. 展开更多
关键词 牙齿的肉 间充质的干细胞 再生药 肝疾病 牙齿银行
下载PDF
Human dental pulp stem cells differentiate into neural precursors but not into mature functional neurons 被引量:3
19
作者 Riikka Aanismaa Jenna Hautala +2 位作者 Annukka Vuorinen Susanna Miettinen Susanna Narkilahti 《Stem Cell Discovery》 2012年第3期85-91,共7页
Large numbers of neuronal cells are needed for regenerative medicine to treat patients suffering from central nervous system diseases and deficits such as Parkinson’s disease and spinal cord injury. One suggestion ha... Large numbers of neuronal cells are needed for regenerative medicine to treat patients suffering from central nervous system diseases and deficits such as Parkinson’s disease and spinal cord injury. One suggestion has been the utilization of human dental pulp stem cells (hDPSCs) for production of neuronal cells which would offer a patient-specific cell source for these treatments. Neuronal differentiation of hDPSCs has been described previously. Here, we tested the differentiation of DPSCs into neuronal cells with previously reported protocol and characterized the cells according to their morphology, gene and protein expressions and most importantly according to their spontaneous electrical functionality with microelectrode array platform (MEA). Our results showed that even though hDPSC-derived neural progenitor stage cells could be produced, these cells did not mature further into functional neuronal cells. Thus, utilization of DPSCs as a cell source for producing grafts to treat neurological deficits requires more efforts before being optimal. 展开更多
关键词 dental pulp stem cell NEURAL Differentiation NEURAL Networks
下载PDF
Mineralized and Osteoid Tissue from Dental Pulp Stem Cells on Micro-arc Oxidation Titanium in vitro
20
作者 黄怡 常婷 +1 位作者 杨成 吴梦娟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第4期620-625,共6页
The presence of insufficient bone volume affects the implant healing and success.The aim of this study was to evaluate osteogenic capacity of dental pulp stem cells(DPSCs) on micro-arc oxidation(MAO) titanium surface.... The presence of insufficient bone volume affects the implant healing and success.The aim of this study was to evaluate osteogenic capacity of dental pulp stem cells(DPSCs) on micro-arc oxidation(MAO) titanium surface.DPSCs were challenged at MAO and smooth titanium surface separately for different durations,and the bone marrow mesenchymal stem cells(BMSCs) served as the positive controls.The osteogenic capacity of DPSCs on MAO titanium surface was assessed by using scanning electron microscopy,energy dispersive spectroscopy,biochemical tests and real-time quantitative PCR.Data showed that DPSCs differentiated into osteoblasts and expressed bone morphogenetic genes on MAO titanium surface.The results of this study revealed that DPSCs had good potential to generate mineralized tissue on MAO titanium plates.The differential potential of DPSCs may be regulated by MAO titanium surface.The osteogenesis potential of DPSCs on the MAO titanium was similar with BMSCs. 展开更多
关键词 dental pulp stem cells micro-arc oxidation OSTEOGENIC differentiation mineralized TISSUE dental implant
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部