An M6.8 earthquake occurred in Luding,Sichuan Province,China,on September 5,2022.Since towns and villages in the earthquake-stricken area are densely populated,the earthquake caused severe fatalities and economic loss...An M6.8 earthquake occurred in Luding,Sichuan Province,China,on September 5,2022.Since towns and villages in the earthquake-stricken area are densely populated,the earthquake caused severe fatalities and economic losses.Rapid estimation of earthquake intensity and disaster losses is significantly important for post-earthquake emergency rescue,scientific anti-seismic deployment,and the reduction of casualties and economic losses.Therefore,we make a preliminary rapid estimation of the earthquake intensity and disaster losses in the aftermath of the Luding earthquake.The seismic intensity represents the distribution of earthquake disasters and the degree of ground damage and can be directly converted from the peak ground velocity(PGV)map.To obtain a reliable PGV distribution map of this earthquake,we combined the finite-fault model constrained by seismic observations,with the complex three-dimensional(3D)geological environment and topographical features to perform strong ground motion simulation.Then,we compared the consistency between the simulated ground motion waveforms and observations,indicating the plausibility and reliability of simulations.In addition,we transformed the PGV simulation results into intensity and obtained a physics-based map of the intensity distribution of the Luding earthquake.The maximum simulated intensity of this earthquake is IX,which is consistent with the maximum intensity determined from the postearthquake field survey.Based on the simulated seismic intensity map of the Luding earthquake and the earthquake disaster loss estimation model,we rapidly estimated the death and economic losses caused by this earthquake.The estimated results show that the death toll caused by this earthquake is probably 50-300,with a mathematic expectation of 89.Thus the government should launch a Level II earthquake emergency response plan.The economic losses are likely to be 10-100 billion RMB,with a mathematical expectation of 23.205 billion RMB.Such seismic intensity simulations and rapid estimation of disaster losses are expected to provide a preliminary scientific reference for governments to carry out the targeted deployment of emergency rescue and post-disaster reconstruction.展开更多
Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the...Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems.展开更多
[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method]...[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.展开更多
ith urban reformation and opening becoming deeper,the work of protection against earthquake and disaster reduction would be more important.In this paper,some ideas are suggested about establishing the information syst...ith urban reformation and opening becoming deeper,the work of protection against earthquake and disaster reduction would be more important.In this paper,some ideas are suggested about establishing the information system for emergency decisions on protection against earthquake and disaster reduction in cities .The information system mainly includes a subsystem for rapid evaluation of damage loss from earthquake (which includes input of seismic information,distribution of earthquake intensity,evaluation of seismic fragility on all social factors and etc.) and a subsystem for the decisive information of seismic emergency(which mainly includes project of disaster relief,project of personnel evacuation,dangerous degree warning for the dangerous articlesstoring places and protection measures against them,assistant decision on fire due to earthquake,location of headquarter for providing disaster relief,and etc.). It is thought that the data investigation and collection about all kinds of buildings(including lifeline engineering)are the most important and difficult work as establishing this system.展开更多
The epicenter intensity of Nilka-Gongliu earthquake with MS6. 0 was Ⅶ degrees; no fatalities but many residential buildings and public facilities were moderately damaged during the earthquake. Traffic and water conse...The epicenter intensity of Nilka-Gongliu earthquake with MS6. 0 was Ⅶ degrees; no fatalities but many residential buildings and public facilities were moderately damaged during the earthquake. Traffic and water conservation facilities were damaged to a certain extent but after emergency repair,production and life in the disaster area were not influenced. According to a sample survey of the earthquake filed,this earthquake caused direct economic loss of approximately 678. 46 million yuan( RMB),and the reconstruction funds required will be about 1. 20349 billion yuan( RMB).展开更多
This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics...This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics-based dynamic rupture and strong ground motion simulations can fully consider the three-dimensional complexity of physical parameters such as fault geometry,stress field,rock properties,and terrain.Quantitative analysis of multiple seismic disaster scenarios along the Qujiang Fault in western Yunnan Province in southwestern China based on different nucleation locations was achieved.The results indicate that the northwestern segment of the Qujiang Fault is expected to experience significantly higher levels of damage compared to the southeastern segment.Additionally,there are significant variations in human losses,even though the economic losses are similar across different scenarios.Dali Bai Autonomous Prefecture,Chuxiong Yi Autonomous Prefecture,Yuxi City,Honghe Hani and Yi Autonomous Prefecture,and Wenshan Zhuang and Miao Autonomous Prefecture were identified as at medium to high seismic risks,with Yuxi and Honghe being particularly vulnerable.Implementing targeted earthquake prevention measures in Yuxi and Honghe will significantly mitigate the potential risks posed by the Qujiang Fault.Notably,although the fault is within Yuxi,Honghe is likely to suffer the most severe damage.These findings emphasize the importance of considering rupture directivity and its influence on ground motion distribution when assessing seismic risk.展开更多
[Objective] The research aimed to study the distribution characteristics of high temperature damage and its influence on the rice yield in the area along Huaihe River.[Method] The meteorological data of 10 stations in...[Objective] The research aimed to study the distribution characteristics of high temperature damage and its influence on the rice yield in the area along Huaihe River.[Method] The meteorological data of 10 stations in the area along Huaihe River during 1965-2009 and the yield data of Anhui single-season middle rice during 1967-2006 were selected.The occurrence characteristic of summer high temperature weather and the intensity of high temperature damage in the area along Huaihe River were analyzed.Based on the previous high temperature damage index of rice,Changfeng County where was the typical rice planting zone in the area along Huaihe River was as the representation,and the yield damage loss rate risk of high temperature damage in Changfeng was analyzed by combining with the historical yield data.[Result] The high temperature weather in the area along Huaihe River frequently happened.The high temperature damage presented 'N' shape trend from west to east.The occurrence frequency of high temperature weather in Huainan and Bengbu where were in the middle area along Huaihe River was more and was less in Huoqiu and Shouxian where were near the south mountain area of Anhui.The occurrence time mainly focused from the middle and last dekads of July to the first dekad of August after the plum rain.At this time,it was the booting,heading and flowering periods of single-season middle rice,and the influence on the rice yield was obvious.The damage loss rate of single-season middle rice yield in Changfeng County along Huaihe River continued to increase as the increasing of high temperature damage duration.But the occurrence probability decreased.The intensity grade of high temperature damage disaster loss rate which happened frequently concentrated mainly in levels I and II.The longer the high temperature damage duration in the reproductive growth stage of rice was,the bigger the damage loss rate was.But the corresponding occurrence probability was small,and vice versa.[Conclusion] The research provided the reference for assessing the high temperature disaster risk.展开更多
In this paper,the types of research methods that contain uncertainty are first introduced,and then the description is concentrated on the progress of study on different types of uncertainties in seismic disaster and l...In this paper,the types of research methods that contain uncertainty are first introduced,and then the description is concentrated on the progress of study on different types of uncertainties in seismic disaster and loss estimation. The main methods applied to uncertainty study are reviewed. Preliminary discussion of the problems currently existing in estimation is also made.展开更多
Restoring lifeline services to an urban neighborhood impacted by a large disaster is critical to the recovery of the city as a whole.Since cities are comprised of many dependent lifeline systems,the pattern of the res...Restoring lifeline services to an urban neighborhood impacted by a large disaster is critical to the recovery of the city as a whole.Since cities are comprised of many dependent lifeline systems,the pattern of the restoration of each lifeline system can have an impact on one or more others.Due to the often uncertain and complex interactions between dense lifeline systems and their individual operations at the urban scale,it is typically unclear how different patterns of restoration will impact the overall recovery of lifeline system functioning.A difficulty in addressing this problem is the siloed nature of the knowledge and operations of different types of lifelines.Here,a city-wide,multi-lifeline restoration model and simulation are provided to address this issue.The approach uses the Graph Model for Operational Resilience,a data-driven discrete event simulator that can model the spatial and functional cascade of hazard effects and the pattern of restoration over time.A novel case study model of the District of North Vancouver is constructed and simulated for a reference magnitude 7.3 earthquake.The model comprises municipal water and wastewater,power distribution,and transport systems.The model includes 1725 entities from within these sectors,connected through 6456 dependency relationships.Simulation of the model shows that water distribution and wastewater treatment systems recover more quickly and with less uncertainty than electric power and road networks.Understanding this uncertainty will provide the opportunity to improve data collection,modeling,and collaboration with stakeholders in the future.展开更多
Cities are centers of socioeconomic activities,and transport networks carry cargoes and passengers from one city to another. However, transport networks are influenced by meteorological hazards, such as rainstorms,hur...Cities are centers of socioeconomic activities,and transport networks carry cargoes and passengers from one city to another. However, transport networks are influenced by meteorological hazards, such as rainstorms,hurricanes, and fog. Adverse weather impacts can easily spread over a network. Existing models evaluating such impacts usually neglect the transdisciplinary nature of approaches for dealing with this problem. In this article, a mesoscopic mathematical model is proposed to quantitatively assess the adverse impact of rainstorms on a regional transport network in northern China by measuring the reduction in traffic volume. The model considers four factors: direct and secondary impacts of rainstorms, interdependency between network components, and recovery abilities of cities. We selected the Beijing-Tianjin-Hebei region as the case study area to verify our model.Socioeconomic, precipitation, and traffic volume data in this area were used for model calibration and validation.The case study highlights the potential of the proposed model for rapid disaster loss assessment and risk reduction planning.展开更多
The focus of the Hazus earthquake model has been largely U.S. centric due to a lack of standardized building-infrastructure data formats applicable elsewhere.In a combined effort between FEMA Region VIII and the Unive...The focus of the Hazus earthquake model has been largely U.S. centric due to a lack of standardized building-infrastructure data formats applicable elsewhere.In a combined effort between FEMA Region VIII and the Universidad de Los Andes, Venezuela, the present study uses the Hazus 2.1 software to simulate earthquake loss estimations for Venezuela. Population totals and demographic distributions were developed using Oak Ridge National Labs Landscan 2008 population data and the census 2011 for Venezuela. The accuracy of the model was further enhanced for Me′rida State, located in western Venezuela, by collecting, incorporating, and developing region and specific inventories including soil maps, liquefaction and landslide susceptibility studies, demographic data, and building inventory information. We used USGS Shake Maps scenarios for two potential earthquake events with peak ground accelerations proposed within Performance Based Seismic Engineering of Buildings, VISION 2000 recommendations. The region has not witnessed an earthquake with a magnitude greater than M 7 in the last120 years. Given the historical record of seismicity and the seismotectonics in the region, it becomes increasingly important to understand the potential implications from moderate to large earthquakes in Me′rida State, Venezuela.展开更多
基金supported by the National Key R&D Program of China(Grant No.2020YFB0204701)the National Natural Science Foundation of China(Grant Nos.41922024&42204054)the Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology(Grant No.2022B1212010002).
文摘An M6.8 earthquake occurred in Luding,Sichuan Province,China,on September 5,2022.Since towns and villages in the earthquake-stricken area are densely populated,the earthquake caused severe fatalities and economic losses.Rapid estimation of earthquake intensity and disaster losses is significantly important for post-earthquake emergency rescue,scientific anti-seismic deployment,and the reduction of casualties and economic losses.Therefore,we make a preliminary rapid estimation of the earthquake intensity and disaster losses in the aftermath of the Luding earthquake.The seismic intensity represents the distribution of earthquake disasters and the degree of ground damage and can be directly converted from the peak ground velocity(PGV)map.To obtain a reliable PGV distribution map of this earthquake,we combined the finite-fault model constrained by seismic observations,with the complex three-dimensional(3D)geological environment and topographical features to perform strong ground motion simulation.Then,we compared the consistency between the simulated ground motion waveforms and observations,indicating the plausibility and reliability of simulations.In addition,we transformed the PGV simulation results into intensity and obtained a physics-based map of the intensity distribution of the Luding earthquake.The maximum simulated intensity of this earthquake is IX,which is consistent with the maximum intensity determined from the postearthquake field survey.Based on the simulated seismic intensity map of the Luding earthquake and the earthquake disaster loss estimation model,we rapidly estimated the death and economic losses caused by this earthquake.The estimated results show that the death toll caused by this earthquake is probably 50-300,with a mathematic expectation of 89.Thus the government should launch a Level II earthquake emergency response plan.The economic losses are likely to be 10-100 billion RMB,with a mathematical expectation of 23.205 billion RMB.Such seismic intensity simulations and rapid estimation of disaster losses are expected to provide a preliminary scientific reference for governments to carry out the targeted deployment of emergency rescue and post-disaster reconstruction.
基金The authors would like to acknowledge the funding support of the National Natural Science Foundation of China (No. 50579009, 70425001).
文摘Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems.
基金Supported by Meteorological Open Research Fund of Huaihe River basin,China(HRM200805)Soft Science Research Plan of Ministry of Science and Technology,China(2007GXS3D087)
文摘[Objective] The research aimed to analyze temporal and spatial variation of strong precipitation caused flood and agricultural disaster loss in Huaihe River basin of Anhui Province during Meiyu period of 2007.[Method] On the basis of rainfalls of each station in Huaihe River basin of Anhui,rainfall data during Meiyu period of 2007 and flood disaster data in the same period,the temporal and spatial distribution characteristics of strong precipitation caused flood during Meiyu period of 2007 and its harm on agriculture were analyzed.The variation rule,distribution characteristics of strong precipitation during Meiyu period in Huaihe River basin of Anhui and its relationship with agricultural disaster loss were discussed.[Result] During Meiyu period of 2007 in Huaihe River basin of Anhui,the rainstorm was more,and the rainfall was large.The precipitation variation showed 'three-peak' trend.Rainfall in Huaihe River basin during Meiyu period of 2007 was greatly more than that homochronously in Yangtze River basin.The rain area over 400.0 mm during Meiyu period mainly located in Huaihe River basin,and the rain area over 600.0 mm mainly located from area along Huaihe River to central Huaibei.The rainfall during Meiyu period gradually decreased toward south and north by the north bank of Huaihe River as the symmetry axis.The rainfall in area along Huaihe River showed wavy distribution in east-west direction.The flood disaster loss index and disaster area of crops in Huaihe River basin of Anhui both increased as rainfall in Meiyu period.[Conclusion] The research provided theoretical basis for flood prevention,disaster reduction and agricultural flood-avoiding development in Huaihe River basin.
文摘ith urban reformation and opening becoming deeper,the work of protection against earthquake and disaster reduction would be more important.In this paper,some ideas are suggested about establishing the information system for emergency decisions on protection against earthquake and disaster reduction in cities .The information system mainly includes a subsystem for rapid evaluation of damage loss from earthquake (which includes input of seismic information,distribution of earthquake intensity,evaluation of seismic fragility on all social factors and etc.) and a subsystem for the decisive information of seismic emergency(which mainly includes project of disaster relief,project of personnel evacuation,dangerous degree warning for the dangerous articlesstoring places and protection measures against them,assistant decision on fire due to earthquake,location of headquarter for providing disaster relief,and etc.). It is thought that the data investigation and collection about all kinds of buildings(including lifeline engineering)are the most important and difficult work as establishing this system.
文摘The epicenter intensity of Nilka-Gongliu earthquake with MS6. 0 was Ⅶ degrees; no fatalities but many residential buildings and public facilities were moderately damaged during the earthquake. Traffic and water conservation facilities were damaged to a certain extent but after emergency repair,production and life in the disaster area were not influenced. According to a sample survey of the earthquake filed,this earthquake caused direct economic loss of approximately 678. 46 million yuan( RMB),and the reconstruction funds required will be about 1. 20349 billion yuan( RMB).
基金supported by the Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology (2022B1212010002)Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0203)the Shenzhen Science and Technology Program (KQTD20170810111725321)
文摘This study achieved the construction of earthquake disaster scenarios based on physics-based methods-from fault dynamic rupture to seismic wave propagation-and then population and economic loss estimations.The physics-based dynamic rupture and strong ground motion simulations can fully consider the three-dimensional complexity of physical parameters such as fault geometry,stress field,rock properties,and terrain.Quantitative analysis of multiple seismic disaster scenarios along the Qujiang Fault in western Yunnan Province in southwestern China based on different nucleation locations was achieved.The results indicate that the northwestern segment of the Qujiang Fault is expected to experience significantly higher levels of damage compared to the southeastern segment.Additionally,there are significant variations in human losses,even though the economic losses are similar across different scenarios.Dali Bai Autonomous Prefecture,Chuxiong Yi Autonomous Prefecture,Yuxi City,Honghe Hani and Yi Autonomous Prefecture,and Wenshan Zhuang and Miao Autonomous Prefecture were identified as at medium to high seismic risks,with Yuxi and Honghe being particularly vulnerable.Implementing targeted earthquake prevention measures in Yuxi and Honghe will significantly mitigate the potential risks posed by the Qujiang Fault.Notably,although the fault is within Yuxi,Honghe is likely to suffer the most severe damage.These findings emphasize the importance of considering rupture directivity and its influence on ground motion distribution when assessing seismic risk.
基金Supported by Public Welfare Industry (Meteorology) Science Research Special Item (GYHY201106027)National Science and Technology Support Plan (2011BAD16B06) .
文摘[Objective] The research aimed to study the distribution characteristics of high temperature damage and its influence on the rice yield in the area along Huaihe River.[Method] The meteorological data of 10 stations in the area along Huaihe River during 1965-2009 and the yield data of Anhui single-season middle rice during 1967-2006 were selected.The occurrence characteristic of summer high temperature weather and the intensity of high temperature damage in the area along Huaihe River were analyzed.Based on the previous high temperature damage index of rice,Changfeng County where was the typical rice planting zone in the area along Huaihe River was as the representation,and the yield damage loss rate risk of high temperature damage in Changfeng was analyzed by combining with the historical yield data.[Result] The high temperature weather in the area along Huaihe River frequently happened.The high temperature damage presented 'N' shape trend from west to east.The occurrence frequency of high temperature weather in Huainan and Bengbu where were in the middle area along Huaihe River was more and was less in Huoqiu and Shouxian where were near the south mountain area of Anhui.The occurrence time mainly focused from the middle and last dekads of July to the first dekad of August after the plum rain.At this time,it was the booting,heading and flowering periods of single-season middle rice,and the influence on the rice yield was obvious.The damage loss rate of single-season middle rice yield in Changfeng County along Huaihe River continued to increase as the increasing of high temperature damage duration.But the occurrence probability decreased.The intensity grade of high temperature damage disaster loss rate which happened frequently concentrated mainly in levels I and II.The longer the high temperature damage duration in the reproductive growth stage of rice was,the bigger the damage loss rate was.But the corresponding occurrence probability was small,and vice versa.[Conclusion] The research provided the reference for assessing the high temperature disaster risk.
基金funded by the project of "Study of Uncertainties in Earthquake Loss Estimation" of the National Natural Science Foundation,China (Grant No.40474023)
文摘In this paper,the types of research methods that contain uncertainty are first introduced,and then the description is concentrated on the progress of study on different types of uncertainties in seismic disaster and loss estimation. The main methods applied to uncertainty study are reviewed. Preliminary discussion of the problems currently existing in estimation is also made.
文摘Restoring lifeline services to an urban neighborhood impacted by a large disaster is critical to the recovery of the city as a whole.Since cities are comprised of many dependent lifeline systems,the pattern of the restoration of each lifeline system can have an impact on one or more others.Due to the often uncertain and complex interactions between dense lifeline systems and their individual operations at the urban scale,it is typically unclear how different patterns of restoration will impact the overall recovery of lifeline system functioning.A difficulty in addressing this problem is the siloed nature of the knowledge and operations of different types of lifelines.Here,a city-wide,multi-lifeline restoration model and simulation are provided to address this issue.The approach uses the Graph Model for Operational Resilience,a data-driven discrete event simulator that can model the spatial and functional cascade of hazard effects and the pattern of restoration over time.A novel case study model of the District of North Vancouver is constructed and simulated for a reference magnitude 7.3 earthquake.The model comprises municipal water and wastewater,power distribution,and transport systems.The model includes 1725 entities from within these sectors,connected through 6456 dependency relationships.Simulation of the model shows that water distribution and wastewater treatment systems recover more quickly and with less uncertainty than electric power and road networks.Understanding this uncertainty will provide the opportunity to improve data collection,modeling,and collaboration with stakeholders in the future.
基金sponsored by the National Science Foundation of China Youth Project (#41401599)the National Basic Research Program of China (2012CB955402)+2 种基金the Beijing Municipal Science and Technology Commission (Z151100002115040)the International Cooperation Project (2012DFG20710)the International Center of Collaborative Research on Disaster Risk Reduction
文摘Cities are centers of socioeconomic activities,and transport networks carry cargoes and passengers from one city to another. However, transport networks are influenced by meteorological hazards, such as rainstorms,hurricanes, and fog. Adverse weather impacts can easily spread over a network. Existing models evaluating such impacts usually neglect the transdisciplinary nature of approaches for dealing with this problem. In this article, a mesoscopic mathematical model is proposed to quantitatively assess the adverse impact of rainstorms on a regional transport network in northern China by measuring the reduction in traffic volume. The model considers four factors: direct and secondary impacts of rainstorms, interdependency between network components, and recovery abilities of cities. We selected the Beijing-Tianjin-Hebei region as the case study area to verify our model.Socioeconomic, precipitation, and traffic volume data in this area were used for model calibration and validation.The case study highlights the potential of the proposed model for rapid disaster loss assessment and risk reduction planning.
文摘The focus of the Hazus earthquake model has been largely U.S. centric due to a lack of standardized building-infrastructure data formats applicable elsewhere.In a combined effort between FEMA Region VIII and the Universidad de Los Andes, Venezuela, the present study uses the Hazus 2.1 software to simulate earthquake loss estimations for Venezuela. Population totals and demographic distributions were developed using Oak Ridge National Labs Landscan 2008 population data and the census 2011 for Venezuela. The accuracy of the model was further enhanced for Me′rida State, located in western Venezuela, by collecting, incorporating, and developing region and specific inventories including soil maps, liquefaction and landslide susceptibility studies, demographic data, and building inventory information. We used USGS Shake Maps scenarios for two potential earthquake events with peak ground accelerations proposed within Performance Based Seismic Engineering of Buildings, VISION 2000 recommendations. The region has not witnessed an earthquake with a magnitude greater than M 7 in the last120 years. Given the historical record of seismicity and the seismotectonics in the region, it becomes increasingly important to understand the potential implications from moderate to large earthquakes in Me′rida State, Venezuela.