The adoption of Docker containers has revolutionized software deployment by providing a lightweight and efficient way to isolate applications in data centers. However, securing these containers, especially when handli...The adoption of Docker containers has revolutionized software deployment by providing a lightweight and efficient way to isolate applications in data centers. However, securing these containers, especially when handling sensitive data, poses significant challenges. Traditional Linux Security Modules (LSMs) such as SELinux and AppArmor have limitations in providing fine-grained access control to files within containers. This paper presents a novel approach using eBPF (extended Berkeley Packet Filter) to implement a LSM that focuses on file-oriented access control within Docker containers. The module allows the specification of policies that determine which programs can access sensitive files, providing enhanced security without relying solely on the host operating system’s major LSM.展开更多
With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and ...With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.展开更多
文摘The adoption of Docker containers has revolutionized software deployment by providing a lightweight and efficient way to isolate applications in data centers. However, securing these containers, especially when handling sensitive data, poses significant challenges. Traditional Linux Security Modules (LSMs) such as SELinux and AppArmor have limitations in providing fine-grained access control to files within containers. This paper presents a novel approach using eBPF (extended Berkeley Packet Filter) to implement a LSM that focuses on file-oriented access control within Docker containers. The module allows the specification of policies that determine which programs can access sensitive files, providing enhanced security without relying solely on the host operating system’s major LSM.
文摘With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.