期刊文献+
共找到7,560篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph
1
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
Parametric Optimization of Wheel Spoke Structure for Drag Reduction of an Ahmed Body
2
作者 Huihui Zhai Dongqi Jiao Haichao Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期955-975,共21页
The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performa... The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction. 展开更多
关键词 Ahmed body wheel spoke design parameter optimization drag reduction numerical simulation
下载PDF
Airfoil friction drag reduction based on grid-type and super-dense array plasma actuators
3
作者 方子淇 宗豪华 +2 位作者 吴云 梁华 苏志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th... To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned. 展开更多
关键词 plasma actuator flow control drag reduction AIRFOIL
下载PDF
Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train
4
作者 Tian Li Hao Liang +1 位作者 Zerui Xiang Jiye Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第2期463-473,共11页
A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator typ... A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains.Using the shear stress transport(SST)k-ωturbulence model,the effect of various vortex generator types on the aerodynamic characteristics of an ICE2(Inter-city Electricity)train has been investigated.The results indi-cate that the vortex generators with wider triangle,trapezoid,and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake.This alteration effectively reduces the resistance of the tail car.Meanwhile,the micro-ramp vortex generator with its convergent structure at the rear exhibits enhancedflow-guiding capabilities,resulting in a 15.4%reduction in the drag of the tail car. 展开更多
关键词 Vortex generator aerodynamic drag REDUCTION numerical simulation
下载PDF
Estimation of Displacement and Extension due to Reverse Drag of Normal Faults: Forward Method
5
作者 Shunshan Xu Angel Francisco Nieto-Samaniego +1 位作者 Huilong Xu Susana Alicia Alaniz-Álvarez 《International Journal of Geosciences》 CAS 2024年第1期25-39,共15页
In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. Ther... In the case of reverse drag of normal faulting, the displacement and horizontal extension are determined based on the established equations for the three mechanisms: rigid body, vertical shear and inclined shear. There are three sub-cases of basal detachment for the rigid body model: horizontal detachment, antithetic detachment and synthetic detachment. For the rigid body model, the established equations indicate that the total displacement on the synthetic base (D<sub>t2</sub>) is the largest, that on the horizontal base (D<sub>t1</sub>) is moderate, and that on the antithetic base (D<sub>t3</sub>) is the smallest. On the other hand, the value of (D<sub>t1</sub>) is larger than the displacement for the vertical shear (D<sub>t4</sub>). The value of (D<sub>t1</sub>) is larger than or less than the displacement for the inclined shear (D<sub>t5</sub>) depending on the original fault dip δ<sub>0</sub>, bedding angle θ, and the angle of shear direction β. For all original parameters, the value of D<sub>t5</sub> is less than the value of D<sub>t4</sub>. Also, by comparing three rotation mechanisms, we find that the inclined shear produces largest extension, the rigid body model with horizontal detachment produces the smallest extension, and the vertical shear model produces moderate extension. 展开更多
关键词 Fault Rotation Fault drag Fault Displacement EXTENSION Forward Model
下载PDF
Synthesis and Performance of an Associative Anti-shear Drag Reducer Based on Hydrogen Bond Association of Dodecyl Methacrylate
6
作者 Lu Yong Li Chenhao +5 位作者 Li Hao Chen Yue Xu Dan Wang Yiran Meng Yeqiao Zhang Xiaolai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期23-33,共11页
Using K2S2O8-Na2SO3 as the redox initiation system,a hydrogen-bond-association-based dodecyl methacrylate system associative anti-shear drag reducer was synthesised by standard emulsion polymerisation.The reaction pro... Using K2S2O8-Na2SO3 as the redox initiation system,a hydrogen-bond-association-based dodecyl methacrylate system associative anti-shear drag reducer was synthesised by standard emulsion polymerisation.The reaction process was simple and gentle as well as safe and stable.Molecular design was carried out using molecular dynamics simulation methods.The results of infrared spectroscopy,thermogravimetric analysis,differential scanning calorimetry,gel chromatography,and laser light scattering showed that the reaction polymerisation was relatively complete,the product was uniform,the molecular weight distribution was controllable,and the synthesised polymer had good flexibility.The donor lauryl methacrylate-styrene-methacrylic acid(LMA-St-MAA)and acceptor lauryl methacrylate-styrene-dimethylaminoethyl methacrylate(LMA-St-DMA)polymers had an associative intermolecular interaction force,which increased the molecular cluster size of the associative system complex.The complex had good shear resistance,and the test results of the tube pump shear test showed that the synthesised associative oil-soluble polymer drag reduction system exhibited better drag reduction rate performance than poly-α-olefins over repeated cycles.The research results provide a reference plan for minimising the number of station-to-station inputs,thereby ensuring the stability of oil pipelines and reducing transportation costs. 展开更多
关键词 drag reducer associative effect drag reduction rate shear resistance
下载PDF
Comparative analysis on gas–solid drag models in MFIX-DEM simulations of bubbling fluidized bed
7
作者 Ruiyu Li Xiaole Huang +6 位作者 Yuhao Wu Lingxiao Dong Srdjan Beloševic Aleksandar Milicevic Ivan Tomanovic Lei Deng Defu Che 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期64-75,共12页
In this study,the open-source software MFIX-DEM simulations of a bubbling fluidized bed(BFB)are applied to assess nine drag models according to experimental and direct numerical simulation(DNS)results.The influence of... In this study,the open-source software MFIX-DEM simulations of a bubbling fluidized bed(BFB)are applied to assess nine drag models according to experimental and direct numerical simulation(DNS)results.The influence of superficial gas velocity on gas–solid flow is also examined.The results show that according to the distribution of time-averaged particle axial velocity in y direction,except for Wen–Yu and Tenneti–Garg–Subramaniam(TGS),other drag models are consistent with the experimental and DNS results.For the TGS drag model,the layer-by-layer movement of particles is observed,which indicates the particle velocity is not correctly predicted.The time domain and frequency domain analysis results of pressure drop of each drag model are similar.It is recommended to use the drag model derived from DNS or fine grid computational fluid dynamics–discrete element method(CFD-DEM)data first for CFD-DEM simulations.For the investigated BFB,the superficial gas velocity less than 0.9 m·s^(-1) should be adopted to obtain normal hydrodynamics. 展开更多
关键词 MFIX-DEM Simulation Dense flow GAS-SOLID Bubbling fluidized bed drag model
下载PDF
The Influence of Sea Sprays on Drag Coefficient at High Wind Speed
8
作者 SHI Hongyuan LI Qingjie +4 位作者 WANG Zhaowei ZHANG Xuri LI Huaqing XING Hao ZHANG Kuncheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期21-27,共7页
Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spra... Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds.By taking the effects of wave development and sea spray into account,a new parameterization of drag coefficient applicable from low to extreme winds is proposed.It is shown that,under low-to-moderate wind conditions so that the sea spray effects could be neglected,the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age;whereas under high wind conditions,the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests.The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments.Correspondingly,the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed. 展开更多
关键词 sea spray wave age drag coefficient high wind speed
下载PDF
Aerodynamic shape and drag scaling law of a flexible fibre in a flowing medium
9
作者 Bo-Hua Sun Xiao-Lin Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期159-163,共5页
The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To dete... The study of a flexible body immersed in a flowing medium is one of the best way to find its aerodynamic shape.This Letter revisited the problem that was first studied by Alben et al.(Nature 420,479–481,2002).To determine the aerodynamic shape of the fibre,a simpler approach is proposed.A universal drag scaling law is obtained and the universality of the Alben-Shelley-Zhang scaling law is confirmed by using dimensional analysis.A complete Maple code is provided for finding aerodynamic shape of the fibre in the flowing medium. 展开更多
关键词 Flexible fibre Flow medium Aerodynamic shape drag Scaling law
下载PDF
Preparation of Poly-α-Olefin Microcapsule Particles Coated with Polyurethane as a Drag Reducer Based on Interface Polymerization
10
作者 Li Chenhao Lu Yong +6 位作者 Li Hao Chen Yue Meng Yeqiao Zhou Pengfei Xu Dan Wang Yiran Zhang Xiaolai 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期101-112,共12页
The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall ma... The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall materials were synthesized using two reaction monomers,and a poly-α-olefin/PU drag reducer microcapsule was prepared based on interface polymerization.The structure,morphology,thermal stability,compressive strength,and drag reduction performance of the microcapsules were characterized and compared.The results showed that a non-bonding interaction induced the adsorption of the PU coating material,poly-α-olefin and PU then fused at the interface,and the PU coating material was embedded into the inner grooves of poly-α-olefin in the form of a local mosaic,thereby forming a stable core–shell structure.The morphological characterization indicated that PU and poly-α-olefin could form microcapsule structures.The thermal decomposition temperature of the microcapsule was dependent on the type of capsule wall material.The microcapsule structure had a slight effect on poly-α-olefin drag reduction.The system enabled poly-α-olefin to exist in powdered particles through microcapsulation,and had a good dispersion effect that facilitated storage and transport processes.The method effectively inhibited the accumulation and bonding of poly-α-olefin at room temperature. 展开更多
关键词 drag reducer poly-α-olefin POLYURETHANE microcapsules particles interfacial polymerization
下载PDF
Solute drag-controlled grain growth in magnesium investigated by quasi in-situ orientation mapping and level-set simulations
11
作者 Risheng Pei Yujun Zhao +2 位作者 Muhammad Zubair Sangbong Yi Talal Al-Samman 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2312-2325,共14页
Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grai... Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape. 展开更多
关键词 Magnesium alloys Grain growth Quasi in-situ EBSD Level-set simulation Solute drag Dislocation density gradient
下载PDF
Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers
12
作者 Xiaoping Li Jiaxin Pan +6 位作者 Jinwen Shi Yanlin Chai Songwei Hu Qiaorong Han Yanming Zhang Xianwen Li Dengwei Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期290-298,共9页
Although having been increasingly studied, there is still controversy as to when the addition of nanoparticles could improve the drag reduction performance of polymer drag reducer and particularly what is the underlyi... Although having been increasingly studied, there is still controversy as to when the addition of nanoparticles could improve the drag reduction performance of polymer drag reducer and particularly what is the underlying mechanism from the fluid dynamics viewpoint. The drag reduction effects of adding SiO_(2) nanoparticles to various polymer polyacrylamide(PAM) solutions were examined in this work.The optimal combination of SiO_(2) nanoparticles with cationic polyacrylamide was confirmed.Interestingly,the addition of SiO_(2) nanoparticles to cationic polyacrylamide solution was shown to be quite efficient for reducing drag, but only at higher flow rates with Reynolds numbers more than 6000, below which the nanoparticle addition is even negative. The addition of SiO_(2) nanoparticles to the PAM solution is supposed to play a dual role. The first is an increase in flow resistance caused by the Brownian motion of nanoparticles, while the second is a decrease in flow resistance caused by acting as nodes to protect the polymer chain from shear-induced breaking under high shear action. At optimal nanoparticle concentration and under higher Reynolds numbers, the later effect is dominant, which could improve the drag reduction performance of polymer drag reducers. Our work should serve as a guide for the application of natural gas fracturing, where the flow rate is frequently very high. 展开更多
关键词 drag reduction SiO_(2)nanoparticle Cationic polymer Brownian motion
下载PDF
Experimental and Numerical Analysis of Oil-Water Flow with Drag Reducing Polymers in Horizontal Pipes
13
作者 Amer A.Abdulrahman Bashar J.Kadhim +6 位作者 Zainab Y.Shnain Hassan Sh.Majidi Asawer A.Alwaiti Farooq Al-Sheikh Adnan A.AbdulRazak Mohammed Shorbaz Mazin J.Shibeeb 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2579-2595,共17页
The well-known frictional effect related to liquid-liquid two-phaseflow in pipelines can be reduced using drag-reducing additives.In this study,such an effect has been investigated experimentally using a mixture of oil... The well-known frictional effect related to liquid-liquid two-phaseflow in pipelines can be reduced using drag-reducing additives.In this study,such an effect has been investigated experimentally using a mixture of oil and water.Moreover,numerical simulations have been carried out using the COMSOL simulation software.The mea-surements were taken in a horizontal pipe with the length and diameter equal to 3 and 0.125 m,respectively.Moreover,Polyethylene oxide with 150 ppm was exploited to reduce the drag effect while considering different water-to-oil fractions(0.3,0.4,0.5,and 0.7)and a constant totalflow velocity of 2.3 m/s.As made evident by the results,a significant reduction can be obtained in terms of pressure drop,which becomes even more significant as the water to oil fraction is increased.The maximum achieved drag reduction is 70%with a water fraction of 0.7.The results also show that the addition of polymer additives can also have an impact on theflow pattern.Com-parison of experimental and numerically determined pressure drop indicates that the error is smaller than 7%. 展开更多
关键词 Two-phase flow drag reduction POLYMER COMSOL
下载PDF
Drag Coefficient of a Non-Convex Polygonal Plate during Free Fall
14
作者 Yoshihiro Kubota Yuhei Endo 《Journal of Flow Control, Measurement & Visualization》 CAS 2023年第1期1-13,共13页
Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on ... Waterside creatures or aquatic organisms use a fin or web to generate a thrust force. These fins or webs have a non-convex section, referred to as a non-convex shape. We investigate the drag force acting on a non-convex plate during unsteady motion. We perform the experiment in a water tank during free fall. We fabricate the non-convex plate by cutting isosceles triangles from the side of a convex hexagonal plate. The base angle of the triangle is between 0° to 45°. The base angle is 0 indicates the convex hexagonal thin plate. We estimate the drag coefficient with the force balance acting on the model based on the image analysis technique. The results indicate that increasing the base angle by more than 30° increased the drag coefficient. The drag coefficient during unsteady motion changed with the growth of the vortex behind the model. The vortex has small vortices in the shear layer, which is related to the Kelvin-Helmholtz instabilities. 展开更多
关键词 drag Coefficients Freefall Image Analysis Non-Convex Polygonal Plate Unsteady Motion Vortex Formation
下载PDF
Computational Solution to the Problems of Projectile Motion under Significant Linear Drag Effect
15
作者 Annasi Ayubu Said Msafiri Mmasa Mshewa +2 位作者 Grant Charles Mwakipunda Mbega Ramadhani Ngata Elfakiri Ali Mohamed 《Open Journal of Applied Sciences》 CAS 2023年第4期508-528,共21页
This paper investigates the computational solution to the problem of projectile motion under a significant linear drag effect. The drag force acting on the particle within the medium of propagation is proportional to ... This paper investigates the computational solution to the problem of projectile motion under a significant linear drag effect. The drag force acting on the particle within the medium of propagation is proportional to the cross-section area of the projectile, the velocity of the particle, and the medium’s density. From zero air resistance force (vacuum) the problems are well known with solutions, but with air resistance (drag force) the problems have no exact analytical solutions which lead to most of the significant scientific research works using numerical methods. Therefore, this study aims to present the analysis of the computational modelling of drag force exerted by the surrounding medium on the linear motion. However, the horizontal and vertical components of differential equations of motion were derived and characterized from the solutions governed by Newton’s 2<sup>nd</sup> law of motion. The baseball features were presented as the projectile (object) in this work. In addition, the numerical computational results were received from FreeMat. The results were discussed and compared with those from the vacuum. Moreover, the displacements, velocities, range, and trajectories of the projectile were all discussed and a conclusion was made. 展开更多
关键词 drag Force Air Resistance PROJECTILE Newton’s Law
下载PDF
Drag-free卫星编队的发展现状和趋势研究 被引量:3
16
作者 张锦绣 曹喜滨 +1 位作者 董晓光 王继河 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第5期673-677,共5页
分析了Drag-free卫星编队的发展历程,就动力学建模与系统控制方法进行了综合调研和分析,提出了Drag-free卫星编队的应用前景和需要解决的关键技术,为我国未来空间环境与空间天气等超高精密探测奠定一定的基础.
关键词 drag-free卫星 卫星编队 空间环境探测
下载PDF
近地单质量块Drag-Free卫星自适应控制方法 被引量:2
17
作者 董晓光 曹喜滨 +1 位作者 张锦绣 施梨 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第1期1-6,共6页
为了实现Drag-Free卫星中卫星本体对内部质量块的高精度跟踪,首先推导了近地环境下卫星与质量块的相对运动动力学方程,并分析了影响二者相对运动的主要干扰源,针对单质量块Drag-Free卫星的位移模式设计了自适应控制器,适用于卫星质量和... 为了实现Drag-Free卫星中卫星本体对内部质量块的高精度跟踪,首先推导了近地环境下卫星与质量块的相对运动动力学方程,并分析了影响二者相对运动的主要干扰源,针对单质量块Drag-Free卫星的位移模式设计了自适应控制器,适用于卫星质量和空间干扰为定常或慢变未知量的情况,且在卫星质量和外部干扰为未知常值的假设下,控制器能够保证卫星对质量块跟踪误差的全局渐近收敛,最后给出了仿真场景以说明本文方法的有效性. 展开更多
关键词 drag-Free卫星 位移模式 自适应控制 参数估计 干扰补偿
下载PDF
仅有单个陀螺的Drag-free卫星初始速率阻尼模糊控制研究 被引量:1
18
作者 党朝辉 项军华 刘昆 《上海航天》 2012年第1期6-11,共6页
研究了在仅有偏航姿态测量陀螺时,利用Drag-free卫星与其内部定向体间的相对状态观测值实现姿态确定的方法。针对Drag-free卫星的特点,建立了定向体的空间姿态观测模型和Drag-free卫星的姿态动力学方程,据此推导了用于姿态确定的Kalman... 研究了在仅有偏航姿态测量陀螺时,利用Drag-free卫星与其内部定向体间的相对状态观测值实现姿态确定的方法。针对Drag-free卫星的特点,建立了定向体的空间姿态观测模型和Drag-free卫星的姿态动力学方程,据此推导了用于姿态确定的Kalman滤波算法。为实现初始速率阻尼阶段Drag-free卫星的三轴姿态稳定,设计了模糊控制律。仿真结果验证了方法的有效性。 展开更多
关键词 drag—free卫星 单个陀螺 初始速率阻尼 模糊控制
下载PDF
基于大气阻力实时辨识的Drag-free卫星最优控制研究 被引量:1
19
作者 党朝辉 项军华 曾国强 《上海航天》 2010年第6期6-10,60,共6页
研究了基于大气阻力实时辨识的Drag-free卫星最优控制。将Drag-free卫星和其内部的验证质量等效为两颗内、外编队卫星并建立动力学方程,推导了基于卫星和验证质量的相对运动状态观测值反演大气阻力的算法。建立了状态最优调节器模型,采... 研究了基于大气阻力实时辨识的Drag-free卫星最优控制。将Drag-free卫星和其内部的验证质量等效为两颗内、外编队卫星并建立动力学方程,推导了基于卫星和验证质量的相对运动状态观测值反演大气阻力的算法。建立了状态最优调节器模型,采用动态规划求解经典的二次型最优控制。对低轨圆轨道Drag-free卫星的仿真计算结果表明方法的求解精度较高,计算消耗较小。 展开更多
关键词 drag-free卫星 跟踪保持 最优控制 大气阻力 实时辨识
下载PDF
Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation
20
作者 郑博睿 金元中 +3 位作者 喻明浩 李跃强 武斌 陈全龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第11期26-36,共11页
This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445... This work studies the turbulent drag reduction(TDR)effect of a flat plate model using a spanwise slot blowing pulsed plasma actuator(SBP-PA).Wind tunnel experiments are carried out under a Reynolds number of 1.445×10^(4).Using a hot-wire anemometer and an electrical data acquisition system,the influences of millisecond pulsed plasma actuation with different burst frequencies and duty cycles on the microscale coherent structures near the wall of the turbulent boundary layer(TBL)are studied.The experimental results show that the SBP-PA can effectively reduce the frictional drag of the TBL.When the duty cycle exceeds 30%,the TDR rate is greater than 11%,and the optimal drag reduction rate of 13.69%is obtained at a duty cycle of 50%.Furthermore,optimizing the electrical parameters reveals that increasing the burst frequency significantly reduces the velocity distribution in the logarithmic region of the TBL.When the normalized burst frequency reaches f+=2πf_(p)d/U_(∞)=7.196,the optimal TDR effectiveness is 16.97%,indicating a resonance phenomenon between the pulsed plasma actuation and the microscale coherent structures near the wall.Therefore,reasonably selecting the electrical parameters of the plasma actuator is expected to significantly improve the TDR effect. 展开更多
关键词 turbulent boundary layer control plasma flow control HOT-WIRE turbulent frictional drag turbulent drag reduction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部