期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
The Conversion of Non-Dispersed Polymers into Low-Potassium Anti-Collapse Drilling Fluids
1
作者 Hao Hu Jian Guan +2 位作者 Shanfa Tang Jialuo Rong Yuanpeng Cheng 《Fluid Dynamics & Materials Processing》 EI 2024年第2期325-335,共11页
Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ... Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances. 展开更多
关键词 Non-dispersed polymer drilling fluid low potassium anti-collapsing drilling fluid drilling fluid conversion drilling fluid reuse filter vector
下载PDF
Synthetic polymers:A review of applications in drilling fluids
2
作者 Shadfar Davoodi Mohammed Al-Shargabi +2 位作者 David A.Wood Valeriy S.Rukavishnikov Konstantin M.Minaev 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期475-518,共44页
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio... With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided. 展开更多
关键词 Synthetic versus natural polymers Nanopolymers drilling fluid additives LUBRICITY Clay swelling Hole cleaning
下载PDF
Chemical modification of barite for improving the performance of weighting materials for water-based drilling fluids
3
作者 Li-Li Yang Ze-Yu Liu +3 位作者 Shi-bo Wang Xian-Bo He Guan-Cheng Jiang Jie Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期551-566,共16页
With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to r... With increasing drilling depth and large dosage of weighting materials,drilling fluids with high solid content are characterized by poor stability,high viscosity,large water loss,and thick mud cake,easier leading to reservoir damage and wellbore instability.In this paper,micronized barite(MB)was modified(mMB)by grafting with hydrophilic polymer onto the surface through the free radical polymerization to displace conventional API barite partly.The suspension stability of water-based drilling fluids(WBDFs)weighted with API barite:mMB=2:1 in 600 g was significantly enhanced compared with that with API barite/WBDFs,exhibiting the static sag factor within 0.54 and the whole stability index of 2.The viscosity and yield point reached the minimum,with a reduction of more than 40%compared with API barite only at the same density.Through multi-stage filling and dense accumulation of weighting materials and clays,filtration loss was decreased,mud cake quality was improved,and simultaneously it had great reservoir protection performance,and the permeability recovery rate reached 87%.In addition,it also effectively improved the lubricity of WBDFs.The sticking coefficient of mud cake was reduced by 53.4%,and the friction coefficient was 0.2603.Therefore,mMB can serve as a versatile additive to control the density,rheology,filtration,and stability of WBDFs weighted with API barite,thus regulating comprehensive performance and achieving reservoir protection capacity.This work opened up a new path for the productive drilling of extremely deep and intricate wells by providing an efficient method for managing the performance of high-density WBDFs. 展开更多
关键词 drilling fluids Weighting materials Filtration control Reservoir protection Stability property
下载PDF
A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid
4
作者 HUANG Xianbin SUN Jinsheng +3 位作者 LYU Kaihe DONG Xiaodong LIU Fengbao GAO Chongyang 《Petroleum Exploration and Development》 SCIE 2023年第5期1215-1224,共10页
Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-pluggi... Three high-temperature resistant polymeric additives for water-based drilling fluids are designed and developed:weakly cross-linked zwitterionic polymer fluid loss reducer(WCZ),flexible polymer microsphere nano-plugging agent(FPM)and comb-structure polymeric lubricant(CSP).A high-temperature resistant and high-density polymeric saturated brine-based drilling fluid was developed for deep drilling.The WCZ has a good anti-polyelectrolyte effect and exhibits the API fluid loss less than 8 mL after aging in saturated salt environment at 200°C.The FPM can reduce the fluid loss by improving the quality of the mud cake and has a good plugging effect on nano-scale pores/fractures.The CSP,with a weight average molecular weight of 4804,has multiple polar adsorption sites and exhibits excellent lubricating performance under high temperature and high salt conditions.The developed drilling fluid system with a density of 2.0 g/cm^(3)has good rheological properties.It shows a fluid loss less than 15 mL at 200°C and high pressure,a sedimentation factor(SF)smaller than 0.52 after standing at high temperature for 5 d,and a rolling recovery of hydratable drill cuttings similar to oil-based drilling fluid.Besides,it has good plugging and lubricating performance. 展开更多
关键词 deep drilling saturated brine-based drilling fluid high-temperature resistant additive water-based drilling fluid rheological property plugging performance lubricating performance
下载PDF
Improving the anti-collapse performance of water-based drilling fluids of Xinjiang Oilfield using hydrophobically modified silica nanoparticles with cationic surfactants 被引量:1
5
作者 He Li Xian-Bin Huang +3 位作者 Jin-Sheng Sun Kai-He Lv Xu Meng Zhen Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1768-1778,共11页
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of... Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs. 展开更多
关键词 Hydrophobic nanoparticle Wetting alteration Wellbore stability Water-based drilling fluids SHALE
下载PDF
Optimization of Anti-Collapse Drilling Fluid Systems with High Potassium Content
6
作者 Yu Xia Jian Guan +2 位作者 Yong Gao Shanfa Tang Jialuo Rong 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1609-1622,共14页
The ash mudstone in some oil formations is highly water-sensitive.The oil formation is fractured,and the risk of well leakage and collapse is not negligible.This study presents a countermeasure for well collapse preve... The ash mudstone in some oil formations is highly water-sensitive.The oil formation is fractured,and the risk of well leakage and collapse is not negligible.This study presents a countermeasure for well collapse prevention,based on a“force-chemistry synergistic balance”approach and the utilization of environmentally friendly and efficient hydration inhibitors.The relevance of this approach is demonstrated considering a drilling fluid system with the high potassium content.The analysis shows that the system can maintain good rheological properties,filtration loss and suspension stability even after aging at 130℃ for 16 h.The primary roll recovery of rock chips is better than 98%.The secondary rolling recovery rate is 89%.The rapid water loss is close to zero.The effects of carrying rock,sand,hydration inhibition and dispersion of drill chips are all noticeable. 展开更多
关键词 Mudstone hydration force-chemistry synergistic balance environmental protection high potassium content potent inhibition anti-collapse drilling fluid
下载PDF
Performance Analysis of a Profile Control Agent for Waste Drilling Fluid Treatment
7
作者 Xueyu Zhao 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1897-1905,共9页
A method for the treatment of hazardous waste drilling fluids,potentially leading to environmental pollution,is considered.The waste drilling fluid is treated with an inorganic flocculant,an organic flocculant,and a p... A method for the treatment of hazardous waste drilling fluids,potentially leading to environmental pollution,is considered.The waste drilling fluid is treated with an inorganic flocculant,an organic flocculant,and a pH regulator.The profile control agent consists of partially hydrolyzed polyacrylamide,formaldehyde,hexamethylenetetramine,resorcinol,phenol,and the treated waste drilling fluid itself.For a waste drilling fluid concentration of 2500 mg/L,the gelling time of the profile control agent is 25 h,and the gelling strength is 32,000 mPa.s.Compared with the profile control agent prepared by recirculated water under the same conditions,the present profile control agent displays better stability,salt-resistance,and performance. 展开更多
关键词 Waste drilling fluid profile control agent cross-linking system GEL environmental protection
下载PDF
Hydrophobic Small-Molecule Polymers as High-Temperature-Resistant Inhibitors in Water-Based Drilling Fluids
8
作者 Xuyang Yao Kecheng Liu +5 位作者 Zenan Zhou Jun Zhou Xianbin Huang Tiemei Lu Yongsheng Yu He Li 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1775-1787,共13页
Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydra... Water-based drilling fluids can cause hydration of the wellbore rocks,thereby leading to instability.This study aimed to synthesize a hydrophobic small-molecule polymer(HLMP)as an inhibitor to suppress mud shale hydration.An infrared spectral method and a thermogravimetric technique were used to characterize the chemical composition of the HLMP and evaluate its heat stability.Experiments were conducted to measure the linear swelling,rolling recovery rate,and bentonite inhibition rate and evaluate accordingly the inhibition performance of the HLMP.Moreover,the HLMP was characterized through measurements of the zeta potential,particle size distribution,contact angles,and interlayer space testing.As confirmed by the results,the HLMP could successfully be synthesized with a favorable heat stability.Furthermore,favorable results were found for the inhibitory processes of the HLMP on swelling and dispersed hydration during mud shale hydration.The positively charged HLMP could be electrically neutralized with clay particles,thereby inhibiting diffusion in the double electron clay layers.The hydrophobic group in the HLMP molecular structure resulted in the formation of a hydrophobic membrane on the rock surface,enhancing the hydrophobicity of the rock.In addition,the small molecules of the HLMP could plug the spaces between the layers of bentonite crystals,thereby reducing the entry of water molecules and inhibiting shale hydration. 展开更多
关键词 Water-based drilling fluids hydrophobic polymers shale inhibitor temperature resistance
下载PDF
Performance of water-based drilling fluids for deepwater and hydrate reservoirs:Designing and modelling studies
9
作者 Moumita Maiti Ajoy Kumar Bhaumik Ajay Mandal 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1709-1728,共20页
In deepwater drilling,the properties of water-based drilling fluids change remarkably due to low temperature and high pressure,which have a significant effect on lost circulation,wellbore instability and the window be... In deepwater drilling,the properties of water-based drilling fluids change remarkably due to low temperature and high pressure,which have a significant effect on lost circulation,wellbore instability and the window between pore pressure and fracturing pressure.The present work investigates the influence of low temperature and high pressure on polymer and nanoparticle(boron nitride(BN))based drilling fluids with an aim to improve their rheological properties and fluid loss control.The amplitude and frequency sweep tests were conducted to understand the viscoelastic nature of the samples.The amplitude sweep tests confirmed the structural stability of the designed fluid within the studied sweep frequency.The study reveals that storage modulus(G')and loss modulus(G")of the samples are enhanced with increasing concentration of BN nanoparticles.Their viscoelastic range also increases due to the intermolecular interaction within the structure of the fluid in the presence of the nanoparticles.Within the linear viscoelastic range(LVER),all the samples show the dominance of elastic modulus than viscous modulus which delineates the solid-like behaviour.The results of rheological tests of drilling fluid containing BN nanoparticles indicate a significant reduction in plastic viscosity(PV),yield point(YP)and apparent viscosity(AV).The rheological studies conducted at different temperatures(from 10℃to-5℃)and pressures(from 7.8 MPa toll MPa)reveal the minimum effect of pressure and temperature on the rheology of samples,which are desirable for their applications in hydrate and deepwater drilling.The filtration loss experiments conducted at 30℃and 0.69 MPa show a large reduction in fluid loss volume(60.6%)and filter cake thickness(90%)for the sample with 0.4 wt%BN nano particles compared to that of the sample without nanoparticles.The filter cake permeability is also in the favourable range with0.008 mD which shows a 94%reduction compared to the sample without nanoparticles.A regression model was developed to mathematically describe the experimental results,which demonstrates a good fitting with the statistical data of fluid loss volume,thickness and permeability of the filter cake. 展开更多
关键词 Deepwater drilling fluid Filtrate loss Gas hydrate RHEOLOGY Nanoparticle-based drilling fluid
下载PDF
Research progress and development direction of low-temperature drilling fluid for Antarctic region
10
作者 SUN Jinsheng WANG Zonglun +5 位作者 LIU Jingping LYU Kaihe HUANG Xianbin ZHANG Xianfa SHAO Zihua HUANG Ning 《Petroleum Exploration and Development》 CSCD 2022年第5期1161-1168,共8页
By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current pro... By combing the characteristics of drilling in Antarctic region, performance requirements on drilling fluid for Antarctic low temperature conditions, and research progress of low temperature drilling fluid, current problems of the drilling fluid have been sorted out, and the development direction of the drilling fluid has been pointed out. Drilling in the Antarctic region mainly includes drilling in snow, ice and subglacial rock formations, and drilling in Antarctic low temperature conditions will face problems in four aspects:(1) low temperature and large temperature changes in the drilling area;(2) likely well leakage and drillstring-sticking in the snow layer, creep in the ice layer, ice chip gathering jamming in the warm ice layer, well wall collapse in the subglacial rock formations;(3) lack of infrastructure and difficulty in logistical support;(4) fragile environment and low carrying capacity. After years of development, progresses have been made on low-temperature drilling fluids for the Antarctic region. Low-temperature petroleum-based drilling fluid, ethanol/ethylene glycol-based drilling fluid, ester-based drilling fluid and silicone oil-based drilling fluid have been developed. However, these drilling fluids have problems such as insufficient low-temperature tolerance, low environmental performance and weak wellbore stability, etc. In order to meet the performance requirements of drilling fluid under low-temperature conditions in Antarctic region, the working mechanisms of low-temperature drilling fluid must be examined in depth;environment-friendly low-temperature base fluid of drilling fluid and related additives must be developed to prepare environmentally friendly low temperature drilling fluid systems;multi-functional integrated adjustment method for drilling fluid must be worked out to ensure well wall stability and improve cutting-carry capacity when drilling ice formations and ice-rock interlayers;and on-site support operation codes must be established to provide technical support for Antarctic drilling. 展开更多
关键词 Antarctic region snow and ice formation subglacial rock formation low-temperature drilling fluid drilling fluid system working mechanism regulation method construction specification
下载PDF
Carbon nanotube enhanced water-based drilling fluid for high temperature and high salinity deep resource development 被引量:2
11
作者 Jing-Ping Liu Xian-Fa Zhang +6 位作者 Wen-Chao Zhang Kai-He Lv Yin-Rui Bai Jin-Tang Wang Xian-Bin Huang Jia-Feng Jin Jin-Sheng Sun 《Petroleum Science》 SCIE CAS CSCD 2022年第2期916-926,共11页
Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite i... Drilling fluids face failure during drilling deep reservoir with high temperature and high salt.The experimental results show that high temperature and salinity reduce the negative charge on the surface of bentonite in the drilling fluid and cause the coalescence of bentonite particles.As a result,the particles coalesce,the grid structure is destroyed,and the rheological properties,rock-carrying capacity and filtration properties are lost.To resolve the foregoing,in this study,0.05-wt%carbon nanotubes are introduced into a 4%bentonite drilling fluid under conditions where the temperature and concentration of added Na Cl reach 180°C and 10 wt%,respectively.The carbon nanotubes adsorb on the bentonite surface and increase the space among bentonite particles.The steric hindrance prevents the coalescence of bentonite in high temperature and high salt environment.Thus bentonite maintains the small size distribution of bentonite and supports the bentonite grid structure in the drilling fluid.As a result,the rock-carrying capacity of the drilling fluid increases by 85.1%.Moreover,the mud cake formed by the accumulation of small-sized bentonite particles is dense;consequently,the filtration of bentonite drilling fluid reduced by 30.2%. 展开更多
关键词 High temperature Water-based drilling fluid High salinity Carbon nanotube Deep resources
下载PDF
Performance evaluation of laponite as a mud-making material for drilling fluids 被引量:1
12
作者 Zheng-Qiang Xiong Xiao-Dong Li +1 位作者 Fan Fu Yan-Ning Li 《Petroleum Science》 SCIE CAS CSCD 2019年第4期890-900,共11页
In this study, laponite was tested as a mud-making material for drilling fluids. Laponite is a synthetic smectite clay with a structure and composition closely resembling the natural clay mineral hectorite. Commercial... In this study, laponite was tested as a mud-making material for drilling fluids. Laponite is a synthetic smectite clay with a structure and composition closely resembling the natural clay mineral hectorite. Commercially available laponite was characterized by X-ray di ractometry, scanning electron microscopy and infrared spectrometry. Its dispersibility, salt resistance and high-temperature resistance were evaluated. The results showed that laponite possessed superior cation exchange capacity(140.4 mmol/100 g) with interlayer cations of Na^+ and Li^+. Laponite could easily be dispersed in water to yield increased viscosity with no influence from hydration time or temperature. On the other hand, laponite dispersions displayed an excellent heat resistance, with invariant apparent viscosity at high temperatures. For instance, the apparent viscosity of the2 wt% laponite dispersion underwent changes between 22 and 24 mPa s after hot rolling at 180–240 °C for 16 h. Compared to existing mud-making materials, laponite exhibited better mud-making properties. Furthermore, laponite revealed good compatibility with other additives, and the water-based drilling fluids prepared with laponite as mud-making material showed an excellent stability at elevated temperatures and superior performance–cost ratios. Overall, these findings indicated that laponite had an excellent dispersibility at high temperatures and hence would have promising applications as high-temperature mud-making material for preparing water-based drilling fluids designed for ultra-high-temperature environments. 展开更多
关键词 LAPONITE Mud-making material DISPERSIBILITY High-temperature tolerance Ultra-high-temperature water-based drilling fluids
下载PDF
Notoginsenoside as an environmentally friendly shale inhibitor in water-based drilling fluid 被引量:1
13
作者 Jin-Sheng Sun Zong-Lun Wang +6 位作者 Jing-Ping Liu Kai-He Lv Fan Zhang Zi-Hua Shao Xiao-Dong Dong Zhi-Wen Dai Xian-Fa Zhang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期608-618,共11页
The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systemat... The demand for non-toxic and biodegradable shale inhibitors is growing in the drilling industry.In this paper,the effect of notoginsenoside(NS)as a new,environmentally friendly inhibitor of shale hydration is systematically studied for the first time.The inhibition performance of NS was evaluated via inhibition evaluation tests,including mud ball immersion tests,linear expansion tests,shale rolling recovery tests,and compressive strength tests.The inhibition mechanism of NS was analyzed using Fourier transform infrared spectroscopy(FTIR),contact angle measurements,particle size distribution determination,thermogravimetric analysis(TGA),and scanning electron microscopy(SEM).The experimental results demonstrate that NS is able to adhere to the clay surface,forming a hydrophobic film that prevents the entry of water molecules and inhibiting the hydration dispersion of the clay.Because of this,NS can maintain the original state of bentonite pellets in water,which can effectively reduce the swelling rate of bentonite,increase the recovery rate of shale drill cuttings,maintain the strength of the shale,and therefore maintain the stability of the borehole wall during drilling.In addition,NS is non-toxic,degradable,and compatible with water-based drilling fluids.The above advantages make NS a promising candidate for use as an environmentally friendly shale inhibitor. 展开更多
关键词 Notoginsenoside Shale inhibition Environmentally friendly Water-based drilling fluid Inhibition mechanism
下载PDF
Application of sustainable basil seed as an eco-friendly multifunctional additive for water-based drilling fluids 被引量:1
14
作者 Xin Gao Han-Yi Zhong +3 位作者 Xian-Bin Zhang An-Liang Chen Zheng-Song Qiu Wei-An Huang 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1163-1181,共19页
Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-bas... Basil seed,containing anionic heteropolysaccharides in its outer pericarp,swells as gelatinous hydrocolloid when soaked in water.In this study,basil seed powder(BSP)was used as a multifunctional additive for water-based drilling fluids.The chemical composition,water absorbency,rheological properties of aqueous suspension of BSP were tested.The effect of BSP on the rheological and filtration of bentonitebased drilling fluid before and after thermal aging was investigated.The inhibition characteristics were evaluated by linear swelling,shale cuttings dispersion and shale immersion test.Lubricity improvement by BSP was measured with extreme pressure lubricity test.The results revealed that incorporation of BSP into bentonite suspension improved rheological and filtration properties effectively after thermal aging of 120℃.BSP exhibited superior inhibitive capacity to xanthan and synergistic effect with KCl.BSP could reduce friction by forming hydration layer.The nanoscale three-dimensional network structures enable BSP to maintain high water retention and absorb strongly on bentonite and metal surface,contributing to enhanced rheology,filtration,inhibition and lubrication properties.The versatile characteristic of BSP,as well as biodegradation makes it a promising additive using in high performance water-based drilling fluid and a potential alternative to conventional synthetic polymers. 展开更多
关键词 Basil seed Water absorbency MULTIFUNCTION Water-based drilling fluid Three-dimensional network
下载PDF
Investigation of regulating rheological properties of water-based drilling fluids by ultrasound 被引量:1
15
作者 Wei-An Huang Jing-Wen Wang +4 位作者 Ming Lei Gong-Rang Li Zhi-Feng Duan Zhi-Jun Li Shi-Fu Yu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1698-1708,共11页
Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.Th... Regulating rheological properties of water-based drilling fluids has always been a hot topic.This paper proposed a new method for regulating rheological properties of water-based drilling fluids by ultrasonic field.The experimental results showed that the ultrasound increased the viscosity and yield point of bentonite suspension by reducing the particle size of clay,destroying the network structure between clay particles,increasing the mud yield and the cation exchange capacity of bentonite,and promoting the hydration dispersion of bentonite.The change of rheological property showed a memory effect at room temperature and high temperature.Besides,the ultrasonic energy affected the network structure between clays and polymer chains,thus regulating the rheological properties of the bentonite-polymer system.For two types of drilling fluids investigated,the rheology of the poly-sulfonate drilling fluid was regulated by damaging the grid structure between additives and clays by low-power ultrasound and reducing the clay particle size by high-power ultrasound,while the rheology of the deep-water drilling fluid was mainly regulated by disentangling the spatial grid structure between additives.Additionally,ultrasound showed no effect on the lubricity,inhibition and stability of drilling fluids,which proved the feasibility of ultrasound to regulate rheological properties of water-based drilling fluids. 展开更多
关键词 ULTRASOUND SUSPENSION Water-based drilling fluid Rheological property
下载PDF
Stimulus-responsive mechanism of salt-responsive polymer and its application in saturated saltwater drilling fluid 被引量:1
16
作者 HE Yinbo JIANG Guancheng +2 位作者 DONG Tengfei YANG Lili LI Xiaoqing 《Petroleum Exploration and Development》 2020年第5期1131-1137,共7页
AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymeri... AM-AMPS-TAC polymers with different charge distribution are synthesized using acrylamide(AM),2-acrylamido-2-methylpropanesulfonate(AMPS)and 3-acrylamidopropyl trimethylammonium(TAC)at different feed ratios by polymerization in solution.The salt-responsive behavior,reasons leading to salt-responsiveness,and effects of polymers molecular structure on salt-responsiveness are studied by laboratory experiments to find out the adaptability of the polymers.Rheology test under stepwise shear mode shows that the AM-AMPS-TAC polymers have salt responsiveness,and the closer the feeds of AMPS and ATC,the more significant the salt responsiveness will be.Conformation change of polymers molecular chain under salt stimulus is studied by turbidity test and micro-morphology analysis,and the responsive mechanism is further investigated by intrinsic viscosity test and copolymer composition analysis.Results indicate that the salt-responsive behavior of AM-AMPS-TAC polymers derives from the"curled to expanded"transition of chain conformation under salt stimulus,and this transition is led by the screening effect of salt which weakens polymers intramolecular ionic bond.Application in saturated saltwater drilling fluid shows that the AM90-AMPS5-TAC5 polymer has the best salt-tolerance and temperature-tolerance when used together with fluid loss controller PAC-Lv.The drilling fluid saturated with NaCl can maintain stable viscosity,good dispersion and low fluid loss for long time under 150℃. 展开更多
关键词 salt-responsive polymer the salt-responsive behavior stimulus-responsive mechanism chain conformation polymer additive saturated saltwater drilling fluid
下载PDF
Super-amphiphobic, strong self-cleaning and high-efficiency water-based drilling fluids 被引量:1
17
作者 JIANG Guancheng NI Xiaoxiao +2 位作者 LI Wuquan QUAN Xiaohu LUO Xuwu 《Petroleum Exploration and Development》 2020年第2期421-429,共9页
Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free... Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block. 展开更多
关键词 POLYMER super-amphiphobic agent water-based drilling fluid reservoir protection wellbore stability
下载PDF
Laponite:a promising nanomaterial to formulate high-performance water-based drilling fluids
18
作者 Xian-Bin Huang Jin-Sheng Sun +4 位作者 Yi Huang Bang-Chuan Yan Xiao-Dong Dong Fan Liu Ren Wang 《Petroleum Science》 SCIE CAS CSCD 2021年第2期579-590,共12页
High-performance water-based drilling fluids(HPWBFs)are essential to wellbore stability in shale gas exploration and development.Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles.This paper ... High-performance water-based drilling fluids(HPWBFs)are essential to wellbore stability in shale gas exploration and development.Laponite is a synthetic hectorite clay composed of disk-shaped nanoparticles.This paper analyzed the application potential of laponite in HPWBFs by evaluating its shale inhibition,plugging and lubrication performances.Shale inhibition performance was studied by linear swelling test and shale recovery test.Plugging performance was analyzed by nitrogen adsorption experiment and scanning electron microscope(SEM)observation.Extreme pressure lubricity test was used to evaluate the lubrication property.Experimental results show that laponite has good shale inhibition property,which is better than commonly used shale inhibitors,such as polyamine and KCl.Laponite can effectively plug shale pores.It considerably decreases the surface area and pore volume of shale,and SEM results show that it can reduce the porosity of shale and form a seamless nanofilm.Laponite is beneficial to increase lubricating property of drilling fluid by enhancing the drill pipes/wellbore interface smoothness and isolating the direct contact between wellbore and drill string.Besides,laponite can reduce the fluid loss volume.According to mechanism analysis,the good performance of laponite nanoparticles is mainly attributed to the disk-like nanostructure and the charged surfaces. 展开更多
关键词 LAPONITE NANOPARTICLES High performance drilling fluid Shale gas
下载PDF
A new environmentally friendly water-based drilling fluids with laponite nanoparticles and polysaccharide/polypeptide derivatives
19
作者 Xin-Liang Li Guan-Cheng Jiang +2 位作者 Yi Xu Zheng-Qiang Deng Kai Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2959-2968,共10页
Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drillin... Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas. 展开更多
关键词 Water-based drilling fluids Environmental protection High-temperature resistance Laponite nanoparticles Natural materials Wellbore stability
下载PDF
Near-wellbore fracture initiation and propagation induced by drilling fluid invasion during solid fluidization mining of submarine nature gas hydrate sediments
20
作者 Hai-Yan Zhu Yi-Ke Dang +2 位作者 Guo-Rong Wang Shou-Wei Zhou Qiang Fu 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1739-1752,共14页
Drilling in a natural gas hydrate formation is challenging due to the poor consolidation of the formation and the potential evaporation of the hydrate.The unreasonable down-hole pressure of the drilling fluid can not ... Drilling in a natural gas hydrate formation is challenging due to the poor consolidation of the formation and the potential evaporation of the hydrate.The unreasonable down-hole pressure of the drilling fluid can not only lead to the wellbore instability,but also change the predrilling condition of the natural gas hydrate formation,thus leading to an instable wellbore.In this paper,the integrated discrete element method(DEM)-computational fluid dynamics(CFD)work flow is developed to study the wellbore instability due to the penetration of the drilling fluid into the hydrate formation during crack propagations.The results show that the difference between in-situ stresses and overpressure directly affect the drilling fluid invasion behavior.The lower hydrate saturation leads to an easier generation of drilling fluid flow channels and the lower formation breakdown pressure.The breakdown pressure increases with the increase of hydrate saturation,this also indicates that hydrates can enhance the mechanical properties of the formation.The induced cracks are initially accompanied with higher pressure of the drilling fluid.According to the rose diagram of the fracture orientation,a wider orientation of the fracture distribution is observed at higher pressure of the invasion fluid. 展开更多
关键词 Near wellbore Crack initiation and propagation drilling fluid invasion Natural gas hydrate Wellbore instability
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部