期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Theoretical optimization of micropillar arrays for structurally stable bioinspired dry adhesives
1
作者 Ke Ni Zhengzhi Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期124-129,共6页
Inspired by the excellent adhesion performances of setae structure from organisms,micro/nano-pillar array has become one of the paradigms for adhesive surfaces.The micropillar arrays are composed of the resin pillars ... Inspired by the excellent adhesion performances of setae structure from organisms,micro/nano-pillar array has become one of the paradigms for adhesive surfaces.The micropillar arrays are composed of the resin pillars for adhesion and the substrate with different elastic modulus for supporting.The stress singularity at the bi-material corner between the pillars and the substrate can induce the failure of the micropillar-substrate corner and further hinder the fabrication and application of micropillar arrays,yet the design for the stability of the micropillar array lacks systematical and quantitative guides.In this work,we develop a semi-analytical method to provide the full expressions for the stress distribution within the bi-material corner combining analytical derivations and numerical calculations.The predictions for the stress within the singularity field can be obtained based on the full expressions of the stress.The good agreement between the predictions and the FEM results demonstrates the high reliability of our method.By adopting the strain energy density factor approach,the stability of the pillar-substrate corner is assessed by predicting the failure at the corner.For the elastic mismatch between the pillar and substrate given in this paper,the stability can be improved by increasing the ratio of the shear modulus of the substrate to that of the micropillar.Our study provides accurate predictions for the stress distribution at the bi-material corner and can guide the optimization of material combinations of the pillars and the substrate for more stable bioinspired dry adhesives. 展开更多
关键词 Micropillar array Stability Bi-material corner dry adhesive
下载PDF
A Mechanical Model for the Adhesion of Spiders to Nominally Flat Surfaces 被引量:5
2
作者 Alessandro Gasparetto Tobias Seidl Renato Vidoni 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期135-142,共8页
In dry attachment systems of spiders and geckos, van der Waals forces mediate attraction between substrate and animal tarsus. In particular, the scopula of Evarcha arcuata spiders allows for reversible attachment and ... In dry attachment systems of spiders and geckos, van der Waals forces mediate attraction between substrate and animal tarsus. In particular, the scopula of Evarcha arcuata spiders allows for reversible attachment and easy detachment to a broad range of surfaces. Hence, reproducing the scopula's roughness compatibility while maintaining anti-bunching features and dirt particle repellence behavior is a central task for a biomimetic transfer to an engineered model. In the present work we model the scopula of E. arcuata from a mechano-elastic point of view analyzing the influence of its hierarchical structure on the attachment behavior. By considering biological data of the gecko and spider, and the simulation results, the adhesive capabilities of the two animals are compared and important confirmations and new directives in order to reproduce the overall structure are found. Moreover, a possible suggestion of how the spider detaches in an easy and fast manner is proposed and supported by the results. 展开更多
关键词 BIONICS SPIDER dry adhesion mechano-elastic model hierarchical structure
下载PDF
Switchable dry adhesive based on shape memory polymer with hemispherical indenters for transfer printing 被引量:4
3
作者 Hongyu Luo Chenglong Li +2 位作者 Chuanqian Shi Shuang Nie Jizhou Song 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第6期375-379,共5页
Transfer printing based on switchable adhesive is essential for developing unconventional systems,including flexible electronics,stretchable electronics,and micro light-emitting diode(LED)displays.Here we report a des... Transfer printing based on switchable adhesive is essential for developing unconventional systems,including flexible electronics,stretchable electronics,and micro light-emitting diode(LED)displays.Here we report a design of switchable dry adhesive based on shape memory polymer(SMP)with hemispherical indenters,which offers a continuously tunable and reversible adhesion through the combination of the preloading effect and the thermal actuation of SMP.Experimental and numerical studies reveal the fundamental aspects of design,fabrication,and operation of the switchable dry adhesive.Demonstrations of this adhesive concept in transfer printing of flat objects(e.g.,silicon wafers),three-dimensional(3D)objects(e.g.,stainless steel balls),and rough objects(e.g.,frosted glasses)in two-dimensional(2D)or 3D layouts illustrate its unusual manipulation capabilities in heterogeneous material integration applications. 展开更多
关键词 Switchable dry adhesive Shape memory polymer Transfer printing
下载PDF
Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces 被引量:13
4
作者 Ming ZHOU Noshir PESIKA +2 位作者 Hongbo ZENG Yu TIAN Jacob ISRAELACHVILI 《Friction》 SCIE EI CAS 2013年第2期114-129,共16页
The remarkable ability of geckos to climb and run rapidly on walls and ceilings has recently received considerable interest from many researchers.Significant progress has been made in understanding the attachment and ... The remarkable ability of geckos to climb and run rapidly on walls and ceilings has recently received considerable interest from many researchers.Significant progress has been made in understanding the attachment and detachment mechanisms and the fabrication of articulated gecko-inspired adhesives and structured surfaces.This article reviews the direct experiments that have investigated the properties of gecko hierarchical structures,i.e.,the feet,toes,setae,and spatulae,and the corresponding models to ascertain the mechanical principles involved.Included in this review are reports on gecko-inspired surfaces and structures with strong adhesion forces,high ratios of adhesion and friction forces,anisotropic hierarchical structures that give rise to directional adhesion and friction,and“intelligent”attachment and detachment motions. 展开更多
关键词 gecko feet surfaces SETAE spatulae anisotropic dry adhesion and friction articulated motion
原文传递
Gecko-inspired composite micro-pillars with both robust adhesion and enhanced dry self-cleaning property 被引量:3
5
作者 Xiaoxiao Dong Hong Zhao +5 位作者 Zhihang Wang Miray Ouzounian Travis Shihao Hu Yongjian Guo Lipeng Zhang Quan Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2333-2337,共5页
Self-cleaning surfaces are desirable in many engineering applications where low energy consumption,reusability and sustainability are of the biggest concerns.Inspired by the gecko’s unique ’dry selfcleaning’ hierar... Self-cleaning surfaces are desirable in many engineering applications where low energy consumption,reusability and sustainability are of the biggest concerns.Inspired by the gecko’s unique ’dry selfcleaning’ hierarchical structures.Here we fabricated artificial Fe304/PDMS composites that show robust self-cleaning capabilities.The enhanced adhesion performance is attributable to the decrease of PDMS polymerization degree and the load transfer between PDMS matrix and Fe304 magnetic particles.The self-cleaning surfaces showed up to 24.3% self-cleaning rate with as few as 4 steps.Simulation result indicated that the changing of cross linking between Fe304 and PDMS is the main reason for the enhanced self-cleaning surfaces.This work reveals an alternative route of making high-performance self-cleaning smart surfaces that are applicable in the textile industry,robotic locomotion/gripping technology,outerspace explorations and tissue engineering. 展开更多
关键词 Geock dry adhesion SELF-CLEANING PDMS FE3O4 Composites
原文传递
Magnetic-field-driven switchable adhesion of NdFeB/PDMS composite with gecko-like surface
6
作者 Xiaotian Shi Lei Yang +2 位作者 Sheng Li Yanjie Guo Zhibin Zhao 《Nano Research》 SCIE EI CSCD 2023年第5期6840-6848,共9页
Switchable adhesives have attracted widespread attention due to their strong reusability and adaptability to operate stably in complex environments.However,the simple fabrication of adhesive structures and reliable co... Switchable adhesives have attracted widespread attention due to their strong reusability and adaptability to operate stably in complex environments.However,the simple fabrication of adhesive structures and reliable control of adhesion remain challenging.Here,we developed a neodymium iron boron/polydimethylsiloxane(NdFeB/PDMS)magnetic composite with optimal mechanical and magnetic performance.Then we fabricated lamellar structures and setal arrays using a molding and magnetic field-induced process,imitating the multi-level adhesion system of gecko feet.The lamellar can be deformed under the action of a magnetic field to control the adhesion,the setal array is used to enhance adhesion and provide self-cleanability to the adhering surface.Switchable adhesion was realized by applying an external magnetic field,where the maximum adhesion strength was 5.1 kPa,the switchable range was within 40%.Through finite element analysis simulations and experimental verification,it was proved that the adhesion force variation was ascribed to the magnetic field-induced surface deformation.Finally,we installed the adhesive on the end of the robotic arm,realizing the transfer of the target object.This work provides a simple method to fabricate a gecko-like surface and a practical strategy to realize switchable adhesion,which sheds light on broad application potential in production lines,medical products,more. 展开更多
关键词 switchable adhesives dry adhesion gecko bionics magnetic field
原文传递
Multi-Scale Compliant Foot Designs and Fabrication for Use with a Spider-Inspired Climbing Robot 被引量:10
7
作者 Dan Sameoto Carlo Menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第3期189-196,共8页
Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments... Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments too challenging for traditional wheeled designs. To adhere to surfaces, biomimetic dry adhesives based on gecko feet have been proposed. These biomimetic dry adhesives work by using multi-scale compliant mechanisms to make intimate contact with different surfaces and adhere by using Van der Waals forces. Fabrication of these adhesives has frequently been challenging however, due to the difficulty in combining macro, micro and nanoscale compliance. We present an all polymer foot design for use with a hexapod climbing robot and a fabrication method to improve reliability and yield. A high strength, low-modulus silicone, TC-5005, is used to form the foot base and microscale fibres in one piece by using a two part mold. A macroscale foot design is produced using a 3D printer to produce a base mold, while lithographic definition of microscale fibres in a thick photoresist forms the 'hairs' of the polymer foot. The adhesion of the silicone fibres by themselves or attached to the macro foot is examined to determine best strategies for placement and removal of feet to maximize adhesion. Results demonstrate the successful integration of micro and macro compliant feet for use in climbing on a variety of surfaces. 展开更多
关键词 biomimetics dry adhesive GECKO climbing robot MEMS SILICONE
下载PDF
Enhanced Compliant Adhesive Design and Fabrication with Dual-Level Hierarchical Structure 被引量:2
8
作者 Dan Sameoto Carlo Menon 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第3期228-234,共7页
Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are c... Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are currently able to function evenbetter than natural dry adhesives on smooth surfaces under normal loading. However, the adhesion of these single level syntheticdry adhesives on rough surfaces is still not optimal because of the reduced contact surface area. In nature, contact area ismaximized by hierarchically structuring different scales of fibres capable of conforming surface roughness. In this paper, weadapt the nature’s solution arid propose a novel dual-level hierarchical adhesive design using Polydimethylsiloxane (PDMS),which is tested under peel loading at different orientations. A negative macro-scale mold is manufactured by using a laser cutterto define holes in a Poly(methyl methacrylate) (PMMA) plate. After casting PDMS macro-scale fibres by using the obtainedPMMA mold, a previously prepared micro-fibre adhesive is bonded to the macro-scale fibre substrate. Once the bondingpolymer is cured, the micro-fibre adhesive is cut to form macro scale mushroom caps. Each macro-fibre of the resulting hierarchicaladhesive is able to conform to loads applied in different directions. The dual-level structure enhances the peel strengthon smooth surfaces compared to a single-level dry adhesive, but also weakens the shear strength of the adhesive for a given areain contact. The adhesive appears to be very performance sensitive to the specific size of the fibre tips, and experiments indicatethat designing hierarchical structures is not as simple as placing multiple scales of fibres on top of one another, but can requiresignificant design optimization to enhance the contact mechanics and adhesion strength. 展开更多
关键词 biomimetics dry adhesive HIERARCHICAL dual-level adhesive SILICONE polymer
下载PDF
Additive manufacturing of flexible 3D surface electrodes for electrostatic adhesion control and smart robotic gripping
9
作者 Dong Geun KIM Hyeongmin JE +1 位作者 AJohn HART Sanha KIM 《Friction》 SCIE EI CAS CSCD 2023年第11期1974-1986,共13页
Mechanically flexible surface structures with embedded conductive electrodes are attractive in contact-based devices,such as those used in reversible dry/adhesion and tactile sensing.Geometrical shapes of the surface ... Mechanically flexible surface structures with embedded conductive electrodes are attractive in contact-based devices,such as those used in reversible dry/adhesion and tactile sensing.Geometrical shapes of the surface structures strongly determine the contact behavior and therefore the resulting adhesion and sensing functionalities;however,available features are often restricted by fabrication techniques.Here,we additively manufacture elastomeric structure arrays with diverse angles,shapes,and sizes;this is followed by integration of conductive nanowire electrodes.The fabricated flexible three-dimensional(3D)surface electrodes are mechanically compliant and electrically conductive,providing multifunctional ability to sense touch and to switch adhesion via a combined effect of shear-and electro adhesives.We designed soft,anisotropic flexible structures to mimic the gecko’s reversible adhesion,which is governed by van der Waals forces;we integrated nanowires to further manipulate the localized electric field among the adjacent flexible 3D surface electrodes to provide additional means to digitally tune the electrostatic attraction at the contact interface.In addition,the composite surface can sense the contact force via capacitive sensing.Using our flexible 3D surface electrodes,we demonstrate a complete soft gripper that can grasp diverse convex objects,including metal,ceramic,and plastic products,as well as fresh fruits,and that exhibits 72%greater electroadhesive gripping force when voltage is applied. 展开更多
关键词 electroadhesion tactile sensing robotic gripper additive manufacturing dry adhesive
原文传递
Autonomous self-healing 3D micro-suction adhesives for multi-layered amphibious soft skin electronics
10
作者 Dohyun Lim Min Woo Jeong +9 位作者 Hyeongho Min Yeon Soo Lee Gui Won Hwang Seung Hwan Jeon Kyu Ho Jung Ngoc Thanh Phuong Vo Min-Seok Kim Da Wan Kim Jin Young Oh Changhyun Pang 《InfoMat》 SCIE CSCD 2024年第10期65-79,共15页
Autonomously self-healing, reversible, and soft adhesive microarchitecturesand structured electric elements could be important features in stable and versatilebioelectronic devices adhere to complex surfaces of the hu... Autonomously self-healing, reversible, and soft adhesive microarchitecturesand structured electric elements could be important features in stable and versatilebioelectronic devices adhere to complex surfaces of the human body(rough, dry, wet, and vulnerable). In this study, we propose an autonomousself-healing multi-layered adhesive patch inspired by the octopus, which possessself-healing and robust adhesion properties in dry/underwater conditions.To implement autonomously self-healing octopus-inspired architectures, adynamic polymer reflow model based on structural and material design suggestscriteria for three-dimensional patterning self-healing elastomers. In addition,self-healing multi-layered microstructures with different moduli endowsefficient self-healing ability, human-friendly reversible bio-adhesion, and stablemechanical deformability. Through programmed molecular behavior ofmicrolevel hybrid multiscale architectures, the bioinspired adhesive patchexhibited robust adhesion against rough skin surface under both dry andunderwater conditions while enabling autonomous adhesion restoring performanceafter damaged (over 95% healing efficiency under both conditions for24 h at 30℃). Finally, we developed a self-healing skin-mountable adhesiveelectronics with repeated attachment and minimal skin irritation by laminatingthin gold electrodes on octopus-like structures. Based on the robust adhesionand intimate contact with skin, we successfully obtained reliable measurements during dynamic motion under dry, wet, and damagedconditions. 展开更多
关键词 biomimetics dry adhesive self-healing polymer stretchable electronics
原文传递
Gecko-Like Dry Adhesive Surfaces and Their Applications: A Review 被引量:5
11
作者 Wei Wang Yang Liu Zongwu Xie 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第5期1011-1044,共34页
Gecko has the ability to climb flexibly on various natural surfaces because of its fine layered adhesion system of foot,which has motivated researchers to carry out a lot of researches on it.Significant progresses hav... Gecko has the ability to climb flexibly on various natural surfaces because of its fine layered adhesion system of foot,which has motivated researchers to carry out a lot of researches on it.Significant progresses have been made in the gecko-like dry adhesive surfaces in the past 2 decades,such as the mechanical measurement of adhesive characteristics,the theoretical modeling of adhesive mechanism and the production of synthetic dry adhesive surfaces.Relevant application researches have been carried out as well.This paper focuses on the investigations made in recent years on the gecko-like dry adhesive surfaces,so as to lay the foundation for further research breakthroughs.First,the adhesion system of gecko’s foot and its excellent adhesive characteristics are reviewed,and the adhesive models describing the gecko adhesion are summarily reviewed according to the diff erent contact modes.Then,some gecko-like dry adhesive surfaces with outstanding adhesive characteristics are presented.Next,some application researches based on the gecko-like dry adhesive surfaces are introduced.Finally,the full text is summarized and the problems to be solved on the gecko-like dry adhesive surfaces are prospected. 展开更多
关键词 Gecko adhesion Gecko-like dry adhesive surfaces Climbing robot Robot gripper Medical adhesive tape
下载PDF
Effective metal mold method for the production of bionic adhesives based on electrochemical modifications
12
作者 Cong YUAN Keju JI +4 位作者 Yiqiang TANG Zizhuo WANG Enhua CUI Jian CHEN Zhendong DAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期332-340,共9页
Bionic adhesives with tip-expanded microstructural arrays have attracted considerable interest owing to their high adhesive performance at low preloads.Their mainstream manufacturing method is molding.Due to most mold... Bionic adhesives with tip-expanded microstructural arrays have attracted considerable interest owing to their high adhesive performance at low preloads.Their mainstream manufacturing method is molding.Due to most molds are made of silicon or silicon-based soft templates,and have poor wear resistant or vulnerability to high temperature,limiting their use in large-scale manufacturing.Nickel is widely used as an embossing mold in the micro/nano-imprint industrial process owing to its good mechanical properties.However,the processing of metal molds for the fabrication of tip-expanded microstructural arrays is extremely challenging.In this study,using electrodeposition techniques,the shape of the micropores is modified to obtain end-controlled pores.The effect of the non-uniformity of the electric field on the microporous morphology in the electrodeposition process is systematically investigated.Furthermore,the mechanism of non-uniformity evolution of the microporous morphology is revealed.The optimized microporous metal array is used as a mold to investigate the cavity evolution laws of the elastic cushions under pre-load during the manufacturing process.As a result,typical bionic adhesives with tip-expansion are obtained.Moreover,corresponding adhesion mechanics are analyzed.The results show that electrochemical modifications have broad application prospects in the fabrication of tip-expanded microstructures,providing a new method for the large-scale fabrication of bionic adhesives based on metal molds. 展开更多
关键词 Bionic adhesive dry adhesion ELECTRO-DEPOSITION Metal mold Micro/nano-imprint Micro-porous
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部