期刊文献+
共找到12,792篇文章
< 1 2 250 >
每页显示 20 50 100
A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection
1
作者 Zhong Qu Guoqing Mu Bin Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期255-273,共19页
Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr... Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection. 展开更多
关键词 Shallow feature extraction module large kernel atrous convolution dual encoder lightweight network crack detection
下载PDF
Remaining Useful Life Prediction of Rail Based on Improved Pulse Separable Convolution Enhanced Transformer Encoder
2
作者 Zhongmei Wang Min Li +2 位作者 Jing He Jianhua Liu Lin Jia 《Journal of Transportation Technologies》 2024年第2期137-160,共24页
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di... In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set. 展开更多
关键词 Equipment Health Prognostics Remaining Useful Life Prediction Pulse Separable Convolution Attention Mechanism Transformer encoder
下载PDF
基于encoder-decoder框架的城镇污水厂出水水质预测 被引量:1
3
作者 史红伟 陈祺 +1 位作者 王云龙 李鹏程 《中国农村水利水电》 北大核心 2023年第11期93-99,共7页
由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encod... 由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encoder-decoder结构的神经网络预测水质。结果显示,所提结构对LSTM和GRU网络预测能力都有一定提升,对长期预测能力提升更加显著,ED-GRU模型效果最佳,短期预测中的4个出水水质指标均方根误差(RMSE)为0.7551、0.2197、0.0734、0.3146,拟合优度(R2)为0.9013、0.9332、0.9167、0.9532,可以预测出水质局部变化,而长期预测中的4个指标RMSE为1.7204、1.7689、0.4478、0.8316,R2为0.4849、0.5507、0.4502、0.7595,可以预测出水质变化趋势,与顺序结构相比,短期预测RMSE降低10%以上,R2增加2%以上,长期预测RMSE降低25%以上,R2增加15%以上。研究结果表明,基于encoder-decoder结构的神经网络可以对污水厂出水水质进行准确预测,为污水处理工艺改进提供技术支撑。 展开更多
关键词 污水厂出水 encoder-decoder 多指标水质预测 GRU模型
下载PDF
基于时空特征融合的Encoder-Decoder多步4D短期航迹预测
4
作者 石庆研 张泽中 韩萍 《信号处理》 CSCD 北大核心 2023年第11期2037-2048,共12页
航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变... 航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变量都呈现出长短期的时间变化模式,并且这些变量之间还存在着相互依赖的空间信息。为了充分提取这种时空特征,本文提出了基于融合时空特征的编码器-解码器(Spatio-Temporal EncoderDecoder,STED)航迹预测模型。在Encoder中使用门控循环单元(Gated Recurrent Unit,GRU)、卷积神经网络(Convolutional Neural Network,CNN)和注意力机制(Attention,AT)构成的双通道网络来分别提取航迹时空特征,Decoder对时空特征进行拼接融合,并利用GRU对融合特征进行学习和递归输出,实现对未来多步航迹信息的预测。利用真实的航迹数据对算法性能进行验证,实验结果表明,所提STED网络模型能够在未来10 min预测范围内进行高精度的短期航迹预测,相比于LSTM、CNN-LSTM和AT-LSTM等数据驱动航迹预测模型具有更高的精度。此外,STED网络模型预测一个航迹点平均耗时为0.002 s,具有良好的实时性。 展开更多
关键词 4D航迹预测 时空特征 encoder-Decoder 门控循环单元
下载PDF
基于Encoder-Decoder注意力网络的异常驾驶行为在线识别方法 被引量:2
5
作者 唐坤 戴语琴 +2 位作者 徐永能 郭唐仪 邵飞 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第8期63-71,共9页
异常驾驶行为是车辆安全运行的重大威胁,其对人员与物资的安全高效投送造成严重危害。以低成本非接触式的手机多传感器数据为基础,通过对驾驶行为特性进行数据分析,提出一种融合Encoder-Decoder深度网络与Attention机制的异常驾驶行为... 异常驾驶行为是车辆安全运行的重大威胁,其对人员与物资的安全高效投送造成严重危害。以低成本非接触式的手机多传感器数据为基础,通过对驾驶行为特性进行数据分析,提出一种融合Encoder-Decoder深度网络与Attention机制的异常驾驶行为的在线识别方法。该方法由基于LSTM(long short-term memory)的Encoder-Decoder、Attention机制与基于SVM(support vector machine)的分类器3个模块构成。该系统识别方法包括:输入编码、注意力学习、特征解码、序列重构、残差计算与驾驶行为分类等6个步骤。该技术方法利用自然驾驶条件下所采集的手机传感器数据进行实验。实验结果表明:①手机多传感器数据融合方法对驾驶行为识别具备有效性;②异常驾驶行为必然会造成数据异常波动;③Attention机制有助于提升模型学习效果,对所提出模型的识别准确率F1-score为0.717,与经典同类模型比较,准确率得到显著提升;④对于汽车异常驾驶行为来说,SVM比Logistic与随机森林算法具有更优越的识别效果。 展开更多
关键词 异常驾驶 深度学习 编码器-解码器 长短时记忆网络 注意力机制
下载PDF
Multi-scale attention encoder for street-to-aerial image geo-localization 被引量:2
6
作者 Songlian Li Zhigang Tu +1 位作者 Yujin Chen Tan Yu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期166-176,共11页
The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance g... The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly. 展开更多
关键词 global mining strategy image geo-localization multiscale attention encoder street-to-aerial cross-view
下载PDF
利用Encoder-Decoder框架的深度学习网络实现绕射波分离及成像 被引量:2
7
作者 马铭 包乾宗 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期56-64,共9页
利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的... 利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的因素分析并不完备。相较于反射波,由于存在不连续构造而产生的绕射波能量微弱并且相互干涉,同时环境干扰使得绕射波进一步湮没。因此,更高精度的波场分离及单独成像是现阶段基于绕射波超高分辨率处理、解释的重点研究方向。为此,首先针对地球物理勘探中地质异常体的准确定位,以携带高分辨率信息的绕射波为研究对象,系统分析在不同尺度、不同物性参数的异常体情况下绕射波的能量大小及形态特征,掌握绕射波与其他类型波叠加的具体形式;然后根据相应特征性质提出基于深度学习技术的绕射波分离成像方法,即利用Encoder-Decoder框架的空洞卷积网络捕获绕射波场特征,从而实现绕射波分离,基于速度连续性原则构建单纯绕射波场的偏移速度模型并完成最终成像。数据测试表明,该方法最终可满足微小地质异常体高精度识别的需求。 展开更多
关键词 绕射波分离成像 深度神经网络 encoder-Decoder框架 方差最大范数
下载PDF
Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis 被引量:1
8
作者 Qiankun Zuo Junhua Hu +5 位作者 Yudong Zhang Junren Pan Changhong Jing Xuhang Chen Xiaobo Meng Jin Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2129-2147,共19页
The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlat... The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks. 展开更多
关键词 Adversarial graph encoder label distribution generative transformer functional brain connectivity graph convolutional network DEMENTIA
下载PDF
Feature Enhanced Stacked Auto Encoder for Diseases Detection in Brain MRI
9
作者 Umair Muneer Butt Rimsha Arif +2 位作者 Sukumar Letchmunan Babur Hayat Malik Muhammad Adil Butt 《Computers, Materials & Continua》 SCIE EI 2023年第8期2551-2570,共20页
The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)... The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes. 展开更多
关键词 Brain diseases deep learning feature enhanced stacked auto encoder stack auto encoder
下载PDF
A New Speech Encoder Based on Dynamic Framing Approach
10
作者 Renyuan Liu Jian Yang +1 位作者 Xiaobing Zhou Xiaoguang Yue 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1259-1276,共18页
Latent information is difficult to get from the text in speech synthesis.Studies show that features from speech can get more information to help text encoding.In the field of speech encoding,a lot of work has been con... Latent information is difficult to get from the text in speech synthesis.Studies show that features from speech can get more information to help text encoding.In the field of speech encoding,a lot of work has been conducted on two aspects.The first aspect is to encode speech frame by frame.The second aspect is to encode the whole speech to a vector.But the scale in these aspects is fixed.So,encoding speech with an adjustable scale for more latent information is worthy of investigation.But current alignment approaches only support frame-by-frame encoding and speech-to-vector encoding.It remains a challenge to propose a new alignment approach to support adjustable scale speech encoding.This paper presents the dynamic speech encoder with a new alignment approach in conjunction with frame-by-frame encoding and speech-to-vector encoding.The speech feature fromourmodel achieves three functions.First,the speech feature can reconstruct the origin speech while the length of the speech feature is equal to the text length.Second,our model can get text embedding fromspeech,and the encoded speech feature is similar to the text embedding result.Finally,it can transfer the style of synthesis speech and make it more similar to the given reference speech. 展开更多
关键词 Speech synthesis dynamic framing convolution network speech encoding
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
11
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
基于BERT-Encoder和数据增强的语法纠错模型 被引量:1
12
作者 黄国栋 徐久珺 马传香 《湖北大学学报(自然科学版)》 CAS 2023年第5期719-725,共7页
语法纠错是自然语言处理领域的重要任务之一,中文由于语法规则灵活复杂,中文语法纠错一直是一项具有挑战性的任务.本研究将中文语法纠错视为机器翻译问题,将错误的语句作为源语句翻译成正确的目标语句.使用Transformer模型作为基线纠错... 语法纠错是自然语言处理领域的重要任务之一,中文由于语法规则灵活复杂,中文语法纠错一直是一项具有挑战性的任务.本研究将中文语法纠错视为机器翻译问题,将错误的语句作为源语句翻译成正确的目标语句.使用Transformer模型作为基线纠错模型,首先,利用BERT学习到的参数初始化编码器(BERT-Encoder)使模型更好的收敛,然后,利用动态掩蔽作为数据增强方法,解决训练所需的带错误标注的平行语料不足的问题.使用MaxMatch Scorer作为评价指标,F0.5相比基线模型提升了9.94%,实验结果表明该方法对模型纠错性能的提升具有有效性. 展开更多
关键词 中文语法纠错 机器翻译 BERT-encoder 数据增强
下载PDF
A novel encoding mechanism for particle physics
13
作者 Zhi‑Guang Tan Sheng‑Jie Wang +2 位作者 You‑Neng Guo Hua Zheng Aldo Bonasera 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期153-166,共14页
This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to fac... This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to facilitate the digital registration and identification of a wide range of particle information.Its design ensures easy integration with different event generators and digital simulations commonly used in high-energy experiments.Moreover,this innovative framework can be easily expanded to encode complex multi-quark states comprising up to nine valence quarks and accommodating an angular momentum of up to 99/2.This versatility and scalability make it a valuable tool. 展开更多
关键词 Multi-quark state encoding mechanism Constituent quark Particle physics
下载PDF
A highly reliable encoding and decoding communication framework based on semantic information
14
作者 Yichi Zhang Haitao Zhao +4 位作者 Kuo Cao Li Zhou Zhe Wang Yueling Liu Jibo Wei 《Digital Communications and Networks》 SCIE CSCD 2024年第3期509-518,共10页
Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding ... Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels. 展开更多
关键词 Semantic information Semantic encoding method Context-based decoding method
下载PDF
Variational data encoding and correlations in quantum-enhanced machine learning
15
作者 Ming-Hao Wang Hua L¨u 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期298-306,共9页
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac... Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing. 展开更多
关键词 quantum machine learning variational data encoding quantum correlation
原文传递
从隐空间理解编码器(Encoder)
16
作者 高焕堂 《电子产品世界》 2023年第6期5-7,共3页
1前言当我们在阅读关于AIGC的文章时,常常会看到Encoder和Decoder名词。它们是AI(即ML)的核心模型,如果能深入理解它们的涵意和功能,就能更流畅地理解相关文章的内容,以及图示。例如,关于Diffusion(扩张模型)的文章里常看到如图1。
关键词 encoder 编码器 扩张模型 核心模型
下载PDF
基于GRU Encoder-decoder和注意力机制的RUL预测方法
17
作者 兰杰 李宁 +1 位作者 李志宁 吕建刚 《现代电子技术》 2023年第8期99-105,共7页
深度学习模型可直接建立机械设备的状态与剩余使用寿命(RUL)之间的映射关系,从而避免人工提取特征和建立健康指标的过程。文中基于深度学习理论,提出一种基于注意力机制和时序编码解码器(Encoder-decoder)相结合的RUL预测方法。首先,基... 深度学习模型可直接建立机械设备的状态与剩余使用寿命(RUL)之间的映射关系,从而避免人工提取特征和建立健康指标的过程。文中基于深度学习理论,提出一种基于注意力机制和时序编码解码器(Encoder-decoder)相结合的RUL预测方法。首先,基于门控循环神经网络(GRU)构建一个时序编码解码器以实现输入序列的重构,其中GRU-Encoder对输入的多元时间序列进行编码;再引入注意力机制对GRU-Encoder在每个时刻的输出向量进行加权融合,以融合后的向量作为编码结果,并将其输入到GRU-Decoder中实现输入序列的重构,同时将编码结果映射为输入样本的RUL。采用CMAPSS数据集对所提方法的有效性进行验证,结果表明,该方法预测精度较高,可行且有效。 展开更多
关键词 剩余使用寿命 RUL预测方法 门控循环神经网络 解码编码器 注意力机制 对比验证
下载PDF
基于Encoder-Decoder-ILSTM模型的瓦斯浓度预测研究
18
作者 陈小建 《能源与节能》 2023年第12期102-105,176,共5页
近年来,神经网络在各领域均发挥了巨大作用,同样在煤矿瓦斯浓度预测当中也有应用。为了提高模型的预测精度和实时性,结合Encoder-Decoder结构、长短期记忆形成、蛇优化算法提出了一种新的神经网络,为促进煤矿安全生产提供了技术支持。
关键词 神经网络 encoder-Decoder 蛇优化算法 瓦斯浓度预测
下载PDF
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
19
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 Multi-Mode Data Fusion Coupling Convolutional Auto-encoder Adaptive Optimization Deep Learning
下载PDF
Virus-Encoded MicroRNAs Reveal How Ranavirus Interacts with Amphibian Immune Defense
20
作者 Aaron Yang 《Journal of Biomedical Science and Engineering》 2024年第10期179-184,共6页
Ranaviruses are harmful viruses that infect amphibians, fish, and reptiles, and have caused particularly devastating declines in amphibian populations. One particular type of ranavirus, called Frog Virus 3 (FV3), has ... Ranaviruses are harmful viruses that infect amphibians, fish, and reptiles, and have caused particularly devastating declines in amphibian populations. One particular type of ranavirus, called Frog Virus 3 (FV3), has been extensively studied due to its prevalence and impact on amphibians. Previous research has primarily focused on the virus’s genes, but little attention has been given to the non-coding regions of its genome. This article reviews recent studies that reveal the ability of ranaviruses, including FV3, to encode microRNA (miRNA), a type of regulatory RNA. These viral miRNAs play a crucial role in suppressing frog immune genes, modulating the virus-host interaction, and promoting viral infection. Understanding how ranaviruses use miRNAs to control disease progression is essential for addressing the health threat they pose to wildlife and ecosystems. 展开更多
关键词 Ranaviruses AMPHIBIANS Virus-encoded MicroRNA Frog Virus 3 Virus-Host Interaction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部