期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids with Rheology
1
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2024年第1期108-168,共61页
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ... This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon. 展开更多
关键词 THERMOVISCOELASTICITY RHEOLOGY Memory Finite Strain Finite Deformation Nonlinear dynamics dynamic bifurcation Ordered Rate Theories
下载PDF
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids
2
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2023年第12期773-838,共66页
This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation the... This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation theorem for thermoviscoelastic solids (TVES) matter without memory. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics. This mathematical model is thermodynamically and mathematically consistent and is ideally suited to study nonlinear dynamics of TVES and dynamic bifurcation and is used in the work presented in this paper. The finite element formulations are constructed for obtaining the solution of the initial value problems (IVPs) described by the mathematical models. Both space-time coupled as well as space-time decoupled finite element methods are considered for obtaining solutions of the IVPs. Space-time coupled finite element formulations based on space-time residual functional (STRF) that yield space-time variationally consistent space-time integral forms are considered. This approach ensures unconditional stability of the computations during the entire evolution. In the space-time decoupled finite element method based on Galerkin method with weak form for spatial discretization, the solutions of nonlinear ODEs in time resulting from the decoupling of space and time are obtained using Newmark linear acceleration method. Newton’s linear method is used to obtain converged solution for the nonlinear system of algebraic equations at each time step in the Newmark method. The different aspects of the deformation physics leading to the factors that influence nonlinear dynamic response and dynamic bifurcation are established using the proposed mathematical model, the solution method and their validity is demonstrated through model problem studies presented in this paper. Energy methods and superposition techniques in any form including those used in obtaining solutions are neither advocated nor used in the present work as these are not supported by calculus of variations and mathematical classification of differential operators appearing in nonlinear dynamics. The primary focus of the paper is to address various aspects of the deformation physics in nonlinear dynamics and their influence on dynamic bifurcation phenomenon using mathematical models strictly based on CBL of CCM using reliable unconditionally stable space-time coupled solution methods, which ensure solution accuracy or errors in the calculated solution are always identified. Many model problem studies are presented to further substantiate the concepts presented and discussed in the paper. Investigations presented in this paper are also compared with published works when appropriate. 展开更多
关键词 Thermodynamic Consistency dynamic bifurcation Static bifurcation Nonlinear Formulation Finite Strain Finite Deformation Thermoviscoelastic Classical Continuum Mechanics Conservation and Balance Laws Nonlinear Damping
下载PDF
DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS 被引量:16
3
作者 MA Tian WANG Shouhong 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第2期185-206,共22页
The authors introduce a notion of dynamic bifurcation for nonlinear evolution equa- tions, which can be called attractor bifurcation. It is proved that as the control pa- rameter crosses certain critical value, the sy... The authors introduce a notion of dynamic bifurcation for nonlinear evolution equa- tions, which can be called attractor bifurcation. It is proved that as the control pa- rameter crosses certain critical value, the system bifurcates from a trivial steady state solution to an attractor with dimension between m and m + 1, where m + 1 is the number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory presented in this article generalizes the existing steady state bifurcations and the Hopf bifurcations. It provides a uni?ed point of view on dynamic bifurcation and can be applied to many problems in physics and mechanics. 展开更多
关键词 Attractor bifurcation Steady state bifurcation dynamic bifurcation Hopf bifurcation Nonlinear evolution equation
原文传递
Bifurcation and Chaotic Dynamics of Homoclinic Systems in R^3 被引量:2
4
作者 Sun Jianhua Department of Mathematics Nanjing University Nanjing, 210008 China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1995年第2期128-136,共9页
We consider perturbations which may or may not depend explicitly on time forthe three-dimensional homoclinic systems. We obtain the existence and bifurcation theorems fortransversal homoclinic points and homoclinic or... We consider perturbations which may or may not depend explicitly on time forthe three-dimensional homoclinic systems. We obtain the existence and bifurcation theorems fortransversal homoclinic points and homoclinic orbits, and illustrate our results with two examples. 展开更多
关键词 bifurcation and Chaotic dynamics of Homoclinic Systems in R^3
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部