At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es...At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.展开更多
In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underg...In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underground structures is derived, and the generalized variational principle of nonconservative system is given, thus the fundamental of dynamical analysis for underground structures to resist blast is proposed. Finally, for the underground cylindrical structure to resist blast, dynamical calculations are made, and compared with the test results.展开更多
The submerged structure is basically a large three-dimensional structure of few statically redundant members. The structure is subjected to vertical dead and live loads in addition to the wave forces. An analysis of d...The submerged structure is basically a large three-dimensional structure of few statically redundant members. The structure is subjected to vertical dead and live loads in addition to the wave forces. An analysis of dynamic stability of the submerged structure without damping has been made by J. Thomas and Abbas (1980). In this paper the analyses of dynamic stability of the sumberged structure with damping are conducted. The case structure with damping is more complicated 'than the case without it. According to the principle of perturbation, a new model for dynamic stability calculation in consideration of damping effect is developed. In this paper, the formulas are deduced, the computational program is compiled, the practical examples are analysed, and this problem is solved very satisfactorily. The computational results show that the shape and value of the regions of dynamic instability can be changed significantly by damping. So only by considering damping can the property of dynamic stability of the submerged structure be reflected correctly.展开更多
Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equa...Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equations of motion is given for the viscoelastically damped structures.An iteration method for solving nonlinear eigenvalue problems is suggested to analyze the dynamic behavior of viscoelastically damped structures. The method has been applied to the complex model analysis of a sandwich cantilever beam with viscoelastic damping material core.展开更多
Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on...Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.展开更多
According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large fini...According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.展开更多
he temperature distnbution on the surface of a flight vehicle and the va-riation of the modulus of elasticity with respect to temperature are considered. The minimum weight structural design with constraints on freque...he temperature distnbution on the surface of a flight vehicle and the va-riation of the modulus of elasticity with respect to temperature are considered. The minimum weight structural design with constraints on frequency, on the coordinates ofmodal nodes and on the upper and lower bounds of the design vanables are studied us-ing Kuhn-Tucker conditions as optimal cntenon. The vanation of the flrst three ordernatural frequencies, modal shapes and minimum structural weight vs temperature gra-dient are discussed. It is pointed out that it is imperative to take into account the effectof aerodynamic heating on structural dynamic optimization. Calculation example showsthat the method obtained is feasible and efficient.展开更多
The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as t...The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as to facilitate the designers to adjust the dynamic properties of the adopted structural system. The construction of the study is composed by following aspects. The first aspect is the modelling of a structural system. As a typical example, a mega frame-core-tube structural system adopted by some famous super tall buildings such as Taipei 101 building, Shanghai World financial center, is employed to demonstrate the modelling of a computational model. The second aspect is the establishment of motion equations constituted by a group of ordinary differential equations for the analyses of free vibration and resonant response. The solutions of the motion equations (that constitutes the third aspect) resorted to ODE-solver technique. Finally, some valuable conclusions are summarized.展开更多
A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversi...A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversion.In this study,the nodal quadrature method is employed to construct a lumped mass matrix for the Chebyshev spectral element method(CSEM).A Gauss-Lobatto type quadrature,based on Gauss-Lobatto-Chebyshev points with a weighting function of unity,is thus derived.With the aid of this quadrature,the CSEM can take advantage of explicit time-marching schemes and provide an efficient new tool for solving structural dynamic problems.Several types of lumped mass Chebyshev spectral elements are designed,including rod,beam and plate elements.The performance of the developed method is examined via some numerical examples of natural vibration and elastic wave propagation,accompanied by their comparison to that of traditional consistent-mass CSEM or the classical finite element method(FEM).Numerical results indicate that the proposed method displays comparable accuracy as its consistent-mass counterpart,and is more accurate than classical FEM.For the simulation of elastic wave propagation in structures induced by high-frequency loading,this method achieves satisfactory performance in accuracy and efficiency.展开更多
Comfort levels on modern superyachts have recently been the object of specific attention of the most important Classification Societies, which issued new rules and regulations for evaluating noise and vibration maximu...Comfort levels on modern superyachts have recently been the object of specific attention of the most important Classification Societies, which issued new rules and regulations for evaluating noise and vibration maximum levels. These rules are named "Comfort Class Rules" and set the general criteria for noise and vibration measurements in different vessels' areas, as well as the maximum noise and vibration limit values. As far as the vibration assessment is concerned, the Comfort Class Rules follow either the ISO 6954:1984 standard or the ISO 6954:2000. After an introduction to these relevant standards, the authors herein present a procedure developed to predict the vibration levels on ships. This procedure builds on finite element linear dynamic analysis and is applied to predict the vibration levels on a 60 m superyacht considered as a case study. The results of the numerical simulations are then benchmarked against experimental data acquired during the sea trial of the vessel. This analysis also allows the authors to evaluate the global damping ratio to be used by designers in the vibration analysis of superyachts.展开更多
The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed.The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, ...The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed.The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition,they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution.The improving understanding of the quasi-Lagrangian structures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.展开更多
A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The mai...A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The main key is that the convolution relationsbetween the input and output of the system in time domain are transformed into linear oP-erators in generalized orthogonal domain. The new theory is fully tested and verified bythe dynamic analysis l 'modal test and dynamic load identification teSt of a simulation speci-men- It is shown that the method has some advantages, such as the simple dynamic cali-bration test, the high identification accuracy, especially for the transient load with shortsampling. These are very useful in engineering applications.展开更多
Floors subjected to mechanical equipment loads frequently present problems associated with excessive vibration which can cause human discomfort or even reduce the structure service life.In this context,this work aims ...Floors subjected to mechanical equipment loads frequently present problems associated with excessive vibration which can cause human discomfort or even reduce the structure service life.In this context,this work aims to develop an analysis methodology in order to assess the fatigue performance of steel-concrete composite floors,when subjected to vibrations induced by mechanical equipment.The studied structural model corresponds to a steel-concrete composite floor spanning 10 m by 10 m,with a total area of 100 m^(2).The numerical model developed for the dynamic analysis adopted the usual mesh refinement techniques present in finite element method(FEM)simulations implemented in the ANSYS program.The investigated floor dynamic response was calculated through the consideration of the dynamic loadings imposed by the mechanical equipment,simulated based on the use of harmonic forces applied on the concrete slabs.Furthermore,the dynamic structural response was performed considering several scenarios for the positioning of the equipment,in order to verify the occurrence of excessive vibration.The fatigue assessment is based on a linear cumulative damage rule through the use of the Rainflow-counting algorithm and S-N curves from traditional design codes.The results of this investigation indicated that the equipment position affects directly the floor dynamic structural response and also significantly influences the structure service life.展开更多
基金National Natural Science Fund of China under Nos.52168072 and 51808467High-level Talents Support Plan of Yunnan Province of China(2020)。
文摘At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.
文摘In this paper, the generalized variational principle of dynamic analysis for the blast-resistant underground structures is established, and the corresponding generalized functional of elastoplastic analysis for underground structures is derived, and the generalized variational principle of nonconservative system is given, thus the fundamental of dynamical analysis for underground structures to resist blast is proposed. Finally, for the underground cylindrical structure to resist blast, dynamical calculations are made, and compared with the test results.
文摘The submerged structure is basically a large three-dimensional structure of few statically redundant members. The structure is subjected to vertical dead and live loads in addition to the wave forces. An analysis of dynamic stability of the submerged structure without damping has been made by J. Thomas and Abbas (1980). In this paper the analyses of dynamic stability of the sumberged structure with damping are conducted. The case structure with damping is more complicated 'than the case without it. According to the principle of perturbation, a new model for dynamic stability calculation in consideration of damping effect is developed. In this paper, the formulas are deduced, the computational program is compiled, the practical examples are analysed, and this problem is solved very satisfactorily. The computational results show that the shape and value of the regions of dynamic instability can be changed significantly by damping. So only by considering damping can the property of dynamic stability of the submerged structure be reflected correctly.
文摘Analysis method for the dynamic behavior of viscoelastically damped structures is studied.A finite element model of sandwich beams with eight degrees of freedom is set up and the finite element formulation of the equations of motion is given for the viscoelastically damped structures.An iteration method for solving nonlinear eigenvalue problems is suggested to analyze the dynamic behavior of viscoelastically damped structures. The method has been applied to the complex model analysis of a sandwich cantilever beam with viscoelastic damping material core.
基金supported by National Natural Science Foundation of China(Grant No.10772060)Heilongjiang Provincial Natural Science Foundation with Excellent Young Investigators of China(GrantNo.JC2006-13)
文摘Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.
文摘According to the hydraulic calculation principles of the orifice outflow, the discharge capacity of the columnar reversing gate under the partial opening condition was calculated and checked. Using ANSYS, a large finite element analysis software, the discharge process was simulated. The distribution rule of the velocities in the gate chamber and downstream channel was obtained. An FEM model of the columnar reversing gate was built, and the natural vibration properties of the gate were analyzed. Based on the Westergaard added mass method, the added mass caused by the fluid-structure coupling motion was taken into account, and the effects of the coupling interaction were discussed. The results show that the size of the small gates meets the demand for discharge capacity, the current in the gate chamber is quite turbulent, the trunnion and arms are obviously impacted by flow, and the effects of water on vibration characteristics are remarkable. The study provides a reference for the design and calculation of gates of the same type.
文摘he temperature distnbution on the surface of a flight vehicle and the va-riation of the modulus of elasticity with respect to temperature are considered. The minimum weight structural design with constraints on frequency, on the coordinates ofmodal nodes and on the upper and lower bounds of the design vanables are studied us-ing Kuhn-Tucker conditions as optimal cntenon. The vanation of the flrst three ordernatural frequencies, modal shapes and minimum structural weight vs temperature gra-dient are discussed. It is pointed out that it is imperative to take into account the effectof aerodynamic heating on structural dynamic optimization. Calculation example showsthat the method obtained is feasible and efficient.
基金Acknowledgment The research work was financially supported both by the Natural Science Foundation of China (51178164) and the Priority Discipline Foundation of Henan Province (507909).
文摘The paper is to introduce a computational methodology that is based on ordinary differential equations (ODE) solver for the structural systems adopted by a super tall building in its preliminary design stage so as to facilitate the designers to adjust the dynamic properties of the adopted structural system. The construction of the study is composed by following aspects. The first aspect is the modelling of a structural system. As a typical example, a mega frame-core-tube structural system adopted by some famous super tall buildings such as Taipei 101 building, Shanghai World financial center, is employed to demonstrate the modelling of a computational model. The second aspect is the establishment of motion equations constituted by a group of ordinary differential equations for the analyses of free vibration and resonant response. The solutions of the motion equations (that constitutes the third aspect) resorted to ODE-solver technique. Finally, some valuable conclusions are summarized.
基金Supported by:Joint Research Fund for Earthquake Science,launched by the National Natural Science Foundation of China and the China Earthquake Administration under Grant No.U2039208。
文摘A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems,as the computational efforts can be greatly reduced in the process of mass matrix inversion.In this study,the nodal quadrature method is employed to construct a lumped mass matrix for the Chebyshev spectral element method(CSEM).A Gauss-Lobatto type quadrature,based on Gauss-Lobatto-Chebyshev points with a weighting function of unity,is thus derived.With the aid of this quadrature,the CSEM can take advantage of explicit time-marching schemes and provide an efficient new tool for solving structural dynamic problems.Several types of lumped mass Chebyshev spectral elements are designed,including rod,beam and plate elements.The performance of the developed method is examined via some numerical examples of natural vibration and elastic wave propagation,accompanied by their comparison to that of traditional consistent-mass CSEM or the classical finite element method(FEM).Numerical results indicate that the proposed method displays comparable accuracy as its consistent-mass counterpart,and is more accurate than classical FEM.For the simulation of elastic wave propagation in structures induced by high-frequency loading,this method achieves satisfactory performance in accuracy and efficiency.
文摘Comfort levels on modern superyachts have recently been the object of specific attention of the most important Classification Societies, which issued new rules and regulations for evaluating noise and vibration maximum levels. These rules are named "Comfort Class Rules" and set the general criteria for noise and vibration measurements in different vessels' areas, as well as the maximum noise and vibration limit values. As far as the vibration assessment is concerned, the Comfort Class Rules follow either the ISO 6954:1984 standard or the ISO 6954:2000. After an introduction to these relevant standards, the authors herein present a procedure developed to predict the vibration levels on ships. This procedure builds on finite element linear dynamic analysis and is applied to predict the vibration levels on a 60 m superyacht considered as a case study. The results of the numerical simulations are then benchmarked against experimental data acquired during the sea trial of the vessel. This analysis also allows the authors to evaluate the global damping ratio to be used by designers in the vibration analysis of superyachts.
基金supported in part by the National Natural Science Foundation of China (Grants 11342011, 11472015, and 11522215)the Thousand Young Talents Program of China
文摘The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed.The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition,they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution.The improving understanding of the quasi-Lagrangian structures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.
文摘A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The main key is that the convolution relationsbetween the input and output of the system in time domain are transformed into linear oP-erators in generalized orthogonal domain. The new theory is fully tested and verified bythe dynamic analysis l 'modal test and dynamic load identification teSt of a simulation speci-men- It is shown that the method has some advantages, such as the simple dynamic cali-bration test, the high identification accuracy, especially for the transient load with shortsampling. These are very useful in engineering applications.
基金the support for this work provided by the Brazilian Science Foundations:CAPES,CNPq and FAPERJ.
文摘Floors subjected to mechanical equipment loads frequently present problems associated with excessive vibration which can cause human discomfort or even reduce the structure service life.In this context,this work aims to develop an analysis methodology in order to assess the fatigue performance of steel-concrete composite floors,when subjected to vibrations induced by mechanical equipment.The studied structural model corresponds to a steel-concrete composite floor spanning 10 m by 10 m,with a total area of 100 m^(2).The numerical model developed for the dynamic analysis adopted the usual mesh refinement techniques present in finite element method(FEM)simulations implemented in the ANSYS program.The investigated floor dynamic response was calculated through the consideration of the dynamic loadings imposed by the mechanical equipment,simulated based on the use of harmonic forces applied on the concrete slabs.Furthermore,the dynamic structural response was performed considering several scenarios for the positioning of the equipment,in order to verify the occurrence of excessive vibration.The fatigue assessment is based on a linear cumulative damage rule through the use of the Rainflow-counting algorithm and S-N curves from traditional design codes.The results of this investigation indicated that the equipment position affects directly the floor dynamic structural response and also significantly influences the structure service life.