The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me...The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.展开更多
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece...Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.展开更多
Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo...Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.展开更多
The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates di...The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.展开更多
With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems...With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems,such as large assets,complex and diverse structures,and lack of computing resources.Traditional network intrusion detection systems cannot meet the security needs of IoT applications.In view of this situation,this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.Usually,traditional intrusion detection algorithms require considerable time for training,and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes;therefore,it is necessary to study intrusion detection algorithms with low weights,short training time,and high detection accuracy for deployment and application on cloud nodes.An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats.This paper discusses the problems related to IoT intrusion prevention in cloud computing environments.Based on the analysis of cloud computing security threats,this study extensively explores IoT intrusion detection,cloud node monitoring,and intrusion response in cloud computing environments by using cloud computing,an improved extreme learning machine,and other methods.We use the Multi-Feature Extraction Extreme Learning Machine(MFE-ELM)algorithm for cloud computing,which adds a multi-feature extraction process to cloud servers,and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes.In our simulation experiments,a classical dataset for intrusion detection is selected as a test,and test steps such as data preprocessing,feature engineering,model training,and result analysis are performed.The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes.Furthermore,it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time,so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster.展开更多
Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accura...Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.展开更多
Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different w...Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment.展开更多
Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly bein...Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.展开更多
Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where info...Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.展开更多
Precipitation is a significant index to measure the degree of drought and flood in a region,which directly reflects the local natural changes and ecological environment.It is very important to grasp the change charact...Precipitation is a significant index to measure the degree of drought and flood in a region,which directly reflects the local natural changes and ecological environment.It is very important to grasp the change characteristics and law of precipitation accurately for effectively reducing disaster loss and maintaining the stable development of a social economy.In order to accurately predict precipitation,a new precipitation prediction model based on extreme learning machine ensemble(ELME)is proposed.The integrated model is based on the extreme learning machine(ELM)with different kernel functions and supporting parameters,and the submodel with the minimum root mean square error(RMSE)is found to fit the test data.Due to the complex mechanism and factors affecting precipitation change,the data have strong uncertainty and significant nonlinear variation characteristics.The mean generating function(MGF)is used to generate the continuation factor matrix,and the principal component analysis technique is employed to reduce the dimension of the continuation matrix,and the effective data features are extracted.Finally,the ELME prediction model is established by using the precipitation data of Liuzhou city from 1951 to 2021 in June,July and August,and a comparative experiment is carried out by using ELM,long-term and short-term memory neural network(LSTM)and back propagation neural network based on genetic algorithm(GA-BP).The experimental results show that the prediction accuracy of the proposed method is significantly higher than that of other models,and it has high stability and reliability,which provides a reliable method for precipitation prediction.展开更多
An IDS(intrusion detection system)provides a foremost front line mechanism to guard networks,systems,data,and information.That’s why intrusion detection has grown as an active study area and provides significant cont...An IDS(intrusion detection system)provides a foremost front line mechanism to guard networks,systems,data,and information.That’s why intrusion detection has grown as an active study area and provides significant contribution to cyber-security techniques.Multiple techniques have been in use but major concern in their implementation is variation in their detection performance.The performance of IDS lies in the accurate detection of attacks,and this accuracy can be raised by improving the recognition rate and significant reduction in the false alarms rate.To overcome this problem many researchers have used different machine learning techniques.These techniques have limitations and do not efficiently perform on huge and complex data about systems and networks.This work focused on ELM(Extreme Learning Machine)technique due to its good capabilities in classification problems and dealing with huge data.The ELM has different activation functions,but the problem is to find out which function is more suitable and performs well in IDS.This work investigates this problem.Here,Well-known activation functions like:sine,sigmoid and radial basis are explored,investigated and applied to measure their performance on the GA(Genetic Algorithm)features subset and with full features set.The NSL-KDD dataset is used as a benchmark.The empirical results are analyzed,addressed and compared among different activation functions of the ELM.The results show that the radial basis and sine functions perform better on GA feature set than the full feature set while the performance of the sigmoid function is almost equal on both features sets.So,the proposal of GA based feature selection reduced 21 features out of 41 that brought up to 98%accuracy and enhanced overall efficiency of extreme learning machine in intrusion detection.展开更多
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该...光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。展开更多
基金supported by the National Natural Science Foundation of China (No.U1960202).
文摘The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.
基金supported in part by the National Natural Science Foundation of China(U2001213 and 61971191)in part by the Beijing Natural Science Foundation under Grant L182018 and L201011+2 种基金in part by National Key Research and Development Project(2020YFB1807204)in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S321)。
文摘Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.
基金supported by the Anhui Provincial Key Research and Development Project(202104a07020005)the University Synergy Innovation Program of Anhui Province(GXXT-2022-019)+1 种基金the Institute of Energy,Hefei Comprehensive National Science Center under Grant No.21KZS217Scientific Research Foundation for High-Level Talents of Anhui University of Science and Technology(13210024).
文摘Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy.
文摘The paper presents an innovative approach towards agricultural insurance underwriting and risk pricing through the development of an Extreme Machine Learning (ELM) Actuarial Intelligent Model. This model integrates diverse datasets, including climate change scenarios, crop types, farm sizes, and various risk factors, to automate underwriting decisions and estimate loss reserves in agricultural insurance. The study conducts extensive exploratory data analysis, model building, feature engineering, and validation to demonstrate the effectiveness of the proposed approach. Additionally, the paper discusses the application of robust tests, stress tests, and scenario tests to assess the model’s resilience and adaptability to changing market conditions. Overall, the research contributes to advancing actuarial science in agricultural insurance by leveraging advanced machine learning techniques for enhanced risk management and decision-making.
基金funded by the Key Research and Development plan of Jiangsu Province (Social Development)No.BE20217162Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Promotion Project No.NJ2021-19.
文摘With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems,such as large assets,complex and diverse structures,and lack of computing resources.Traditional network intrusion detection systems cannot meet the security needs of IoT applications.In view of this situation,this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.Usually,traditional intrusion detection algorithms require considerable time for training,and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes;therefore,it is necessary to study intrusion detection algorithms with low weights,short training time,and high detection accuracy for deployment and application on cloud nodes.An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats.This paper discusses the problems related to IoT intrusion prevention in cloud computing environments.Based on the analysis of cloud computing security threats,this study extensively explores IoT intrusion detection,cloud node monitoring,and intrusion response in cloud computing environments by using cloud computing,an improved extreme learning machine,and other methods.We use the Multi-Feature Extraction Extreme Learning Machine(MFE-ELM)algorithm for cloud computing,which adds a multi-feature extraction process to cloud servers,and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes.In our simulation experiments,a classical dataset for intrusion detection is selected as a test,and test steps such as data preprocessing,feature engineering,model training,and result analysis are performed.The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes.Furthermore,it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time,so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster.
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science and technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2).
文摘Power transformer is one of the most crucial devices in power grid.It is significant to determine incipient faults of power transformers fast and accurately.Input features play critical roles in fault diagnosis accuracy.In order to further improve the fault diagnosis performance of power trans-formers,a random forest feature selection method coupled with optimized kernel extreme learning machine is presented in this study.Firstly,the random forest feature selection approach is adopted to rank 42 related input features derived from gas concentration,gas ratio and energy-weighted dissolved gas analysis.Afterwards,a kernel extreme learning machine tuned by the Aquila optimization algorithm is implemented to adjust crucial parameters and select the optimal feature subsets.The diagnosis accuracy is used to assess the fault diagnosis capability of concerned feature subsets.Finally,the optimal feature subsets are applied to establish fault diagnosis model.According to the experimental results based on two public datasets and comparison with 5 conventional approaches,it can be seen that the average accuracy of the pro-posed method is up to 94.5%,which is superior to that of other conventional approaches.Fault diagnosis performances verify that the optimum feature subset obtained by the presented method can dramatically improve power transformers fault diagnosis accuracy.
基金fully funded by Universiti Teknologi Malaysia under the UTM Fundamental Research Grant(UTMFR)with Cost Center No Q.K130000.2556.21H14.
文摘Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment.
基金supported by the Natural Science Foundation of The Jiangsu Higher Education Institutions of China(Grant No.19JKB520031).
文摘Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.
文摘Due to fast-growing urbanization,the traffic management system becomes a crucial problem owing to the rapid growth in the number of vehicles The research proposes an Intelligent public transportation system where informa-tion regarding all the buses connecting in a city will be gathered,processed and accurate bus arrival time prediction will be presented to the user.Various linear and time-varying parameters such as distance,waiting time at stops,red signal duration at a traffic signal,traffic density,turning density,rush hours,weather conditions,number of passengers on the bus,type of day,road type,average vehi-cle speed limit,current vehicle speed affecting traffic are used for the analysis.The proposed model exploits the feasibility and applicability of ELM in the travel time forecasting area.Multiple ELMs(MELM)for explicitly training dynamic,road and trajectory information are used in the proposed approach.A large-scale dataset(historical data)obtained from Kerala State Road Transport Corporation is used for training.Simulations are carried out by using MATLAB R2021a.The experiments revealed that the efficiency of MELM is independent of the time of day and day of the week.It can manage huge volumes of data with less human intervention at greater learning speeds.It is found MELM yields prediction with accuracy in the range of 96.7%to 99.08%.The MAE value is between 0.28 to 1.74 minutes with the proposed approach.The study revealed that there could be regularity in bus usage and daily bus rides are predictable with a better degree of accuracy.The research has proved that MELM is superior for arrival time pre-dictions in terms of accuracy and error,compared with other approaches.
基金funded by Scientific Research Project of Guangxi Normal University of Science and Technology,grant number GXKS2022QN024.
文摘Precipitation is a significant index to measure the degree of drought and flood in a region,which directly reflects the local natural changes and ecological environment.It is very important to grasp the change characteristics and law of precipitation accurately for effectively reducing disaster loss and maintaining the stable development of a social economy.In order to accurately predict precipitation,a new precipitation prediction model based on extreme learning machine ensemble(ELME)is proposed.The integrated model is based on the extreme learning machine(ELM)with different kernel functions and supporting parameters,and the submodel with the minimum root mean square error(RMSE)is found to fit the test data.Due to the complex mechanism and factors affecting precipitation change,the data have strong uncertainty and significant nonlinear variation characteristics.The mean generating function(MGF)is used to generate the continuation factor matrix,and the principal component analysis technique is employed to reduce the dimension of the continuation matrix,and the effective data features are extracted.Finally,the ELME prediction model is established by using the precipitation data of Liuzhou city from 1951 to 2021 in June,July and August,and a comparative experiment is carried out by using ELM,long-term and short-term memory neural network(LSTM)and back propagation neural network based on genetic algorithm(GA-BP).The experimental results show that the prediction accuracy of the proposed method is significantly higher than that of other models,and it has high stability and reliability,which provides a reliable method for precipitation prediction.
基金This project was funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah under grant no.G:656-611-1439The authors,therefore,acknowledge with thanks DSR for technical and financial support.
文摘An IDS(intrusion detection system)provides a foremost front line mechanism to guard networks,systems,data,and information.That’s why intrusion detection has grown as an active study area and provides significant contribution to cyber-security techniques.Multiple techniques have been in use but major concern in their implementation is variation in their detection performance.The performance of IDS lies in the accurate detection of attacks,and this accuracy can be raised by improving the recognition rate and significant reduction in the false alarms rate.To overcome this problem many researchers have used different machine learning techniques.These techniques have limitations and do not efficiently perform on huge and complex data about systems and networks.This work focused on ELM(Extreme Learning Machine)technique due to its good capabilities in classification problems and dealing with huge data.The ELM has different activation functions,but the problem is to find out which function is more suitable and performs well in IDS.This work investigates this problem.Here,Well-known activation functions like:sine,sigmoid and radial basis are explored,investigated and applied to measure their performance on the GA(Genetic Algorithm)features subset and with full features set.The NSL-KDD dataset is used as a benchmark.The empirical results are analyzed,addressed and compared among different activation functions of the ELM.The results show that the radial basis and sine functions perform better on GA feature set than the full feature set while the performance of the sigmoid function is almost equal on both features sets.So,the proposal of GA based feature selection reduced 21 features out of 41 that brought up to 98%accuracy and enhanced overall efficiency of extreme learning machine in intrusion detection.
文摘光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。