函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。展开更多
为探究机车车轮退化过程中呈现的两阶段特征问题,提出一种基于两阶段维纳过程的车轮剩余寿命预测方法。利用两阶段维纳过程模型建立车轮轮缘退化模型,通过随机化漂移系数表征车轮退化过程中存在的个体差异;利用期望最大化(expectation m...为探究机车车轮退化过程中呈现的两阶段特征问题,提出一种基于两阶段维纳过程的车轮剩余寿命预测方法。利用两阶段维纳过程模型建立车轮轮缘退化模型,通过随机化漂移系数表征车轮退化过程中存在的个体差异;利用期望最大化(expectation maximum,EM)算法及贝叶斯理论实现了退化模型参数的离线估计与在线更新;通过Schwarz信息准则(Schwarz information criterion,SIC)判断并找到车轮退化过程中存在的变点;最后通过某机车车轮实测轮缘退化数据进行了实例验证。结果表明:与单阶段退化模型相比,考虑存在变点的两阶段退化模型更符合现场实际且在车轮80%寿命分位点处预测精度提升了9.42%。剩余寿命预测结果可以为车轮镟修周期的优化提供一定的理论依据。展开更多
文摘函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。
文摘为探究机车车轮退化过程中呈现的两阶段特征问题,提出一种基于两阶段维纳过程的车轮剩余寿命预测方法。利用两阶段维纳过程模型建立车轮轮缘退化模型,通过随机化漂移系数表征车轮退化过程中存在的个体差异;利用期望最大化(expectation maximum,EM)算法及贝叶斯理论实现了退化模型参数的离线估计与在线更新;通过Schwarz信息准则(Schwarz information criterion,SIC)判断并找到车轮退化过程中存在的变点;最后通过某机车车轮实测轮缘退化数据进行了实例验证。结果表明:与单阶段退化模型相比,考虑存在变点的两阶段退化模型更符合现场实际且在车轮80%寿命分位点处预测精度提升了9.42%。剩余寿命预测结果可以为车轮镟修周期的优化提供一定的理论依据。