期刊文献+
共找到3,841篇文章
< 1 2 193 >
每页显示 20 50 100
A Study on the Assessment and Integration of Multi-Source Evapotranspiration Products over the Tibetan Plateau
1
作者 Ming CHENG Lei ZHONG +6 位作者 Yaoming MA Han MA Yaoxin CHANG Peizhen LI Meilin CHENG Xian WANG Nan GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期435-448,共14页
Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in th... Evapotranspiration(ET)is a crucial variable in the terrestrial water,carbon,and energy cycles.At present,a large number of multi source ET products exist.Due to sparse observations,however,great challenges exist in the evaluation and integration of ET products in remote and complex areas such as the Tibetan Plateau(TP).In this paper,the applicability of the multiple collocation(MC)method over the TP is evaluated for the first time,and the uncertainty of multisource ET products(based on reanalysis,remote sensing,and land surface models)is further analyzed,which provides a theoretical basis for ET data fusion.The results show that 1)ET uncertainties quantified via the MC method are lower in RS-based ET products(5.95 vs.7.06 mm month^(-1))than in LSM ET products(10.22 vs.17.97 mm month^(-1))and reanalysis ET estimates(7.27 vs.12.26 mm month-1).2)A multisource evapotranspiration(MET)dataset is generated at a monthly temporal scale with a spatial resolution of 0.25°across the TP during 2005-15.MET has better performance than any individual product.3)Based on the fusion product,the total ET amount over the TP and its patterns of spatiotemporal variability are clearly identified.The annual total ET over the entire TP is approximately 380.60 mm.Additionally,an increasing trend of 1.59±0.85 mm yr^(-1)over the TP is shown during 2005-15.This study provides a basis for future studies on water and energy cycles and water resource management over the TP and surrounding regions. 展开更多
关键词 evapotranspiration data fusion multiple collocation the Tibetan Plateau
下载PDF
SimET: An open-source tool for estimating crop evapotranspiration and soil water balance for plants with multiple growth cycles
2
作者 Minguo Liu Mei Yang Huimin Yang 《The Crop Journal》 SCIE CSCD 2023年第5期1579-1585,共7页
Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many de... Accurate estimation of crop evapotranspiration(ETc) and soil water balance, which is vital for optimizing water management strategy in crop production, can be performed by simulation. But existing software has many deficiencies, including complex operation, limited scalability, lack of batch processing, and a single ETc model. Here we present simET, an open-source software package written in the R programming language. Many concepts involved in crop ETc simulation are condensed into functions in the package. It includes three widely used crop ETc models built on these functions: the single-crop coefficient,double-crop coefficient, and Shuttleworth–Wallace models, along with tools for preparing model data and comparing estimates. SimET supports ETc simulation in crops with repeated growth cycles such as alfalfa, a perennial forage crop that is cut multiple times annually. 展开更多
关键词 Crop evapotranspiration Soil water balance evapotranspiration model R package
下载PDF
Evaluation of Actual Evapotranspiration and Crop Coefficient in Carrot by Remote Sensing Methodology Using Drainage and River Water to Overcome Reduced Water Availability
3
作者 Ali H. Hommadi Nadhir Al-Ansari +2 位作者 Hatem H. Hussien Rafat N. Abd Algan Ghaith M. Ali Majed 《Engineering(科研)》 CAS 2023年第5期352-366,共15页
Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling w... Searching for alternative methods for traditional irrigation is World trend at days due to a reduction in water and increased of drought due to climate changes therefore farmers need use modern methods of scheduling water and minimizing water losses while also increasing yield. To meet the future increasing demands water and food there is a need to utilize alternative methods to reduce evaporation, transpiration and deep percolation of water. Any countries use recycled water (drain and sewage) and desalination water from the sea or drains to irrigate crops plus computing actual crop evapotranspiration (ET<sub>c</sub>) so as to calculate the amount of water to apply to a crop. The paper aims to assess the actual evaporation and evaporation coefficient of carrots, by planting carrots in a field and the crop was exposed to several sources of water (DW and RW) and comparing ET<sub>c</sub>, K<sub>c</sub> and production among plots of three sites (A, B and C). The study used two types of irrigation water (drain water (DW) and river water (RW)). The results were to monthly rate and accumulated actual evapotranspiration to C (irrigation by RW only) more than A (67% RW and 33% DW) and B (17% RW and 83% DW) via 7% and 58%, respectively. The yield to C more than A and B by 17% and 75%, respectively. In conclusion the use of DW can cause a reduction in crop consumptive of carrot crops also causes a reduction in yield, crop length, root length, root size, canopy of crop, number of leaves and biomass of the plant therefore, the drainage water needs to treated before irrigating crops And making use of it to irrigate the fields and fill the shortfall in the amount of water from the river. The drain water helped on filling the water shortage due to climate changes and giving production of carrot crop but less than river water. 展开更多
关键词 CARROT Reference evapotranspiration Actual evapotranspiration (ETa) Marginal Water Crop Coefficient Landsat Satellite
下载PDF
Responses of vegetation yield to precipitation and reference evapotranspiration in a desert steppe in Inner Mongolia,China
4
作者 LI Hongfang WANG Jian +2 位作者 LIU Hu MIAO Henglu LIU Jianfeng 《Journal of Arid Land》 SCIE CSCD 2023年第4期477-490,共14页
Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the charact... Drought,which restricts the sustainable development of agriculture,ecological health,and social economy,is affected by a variety of factors.It is widely accepted that a single variable cannot fully reflect the characteristics of drought events.Studying precipitation,reference evapotranspiration(ET_(0)),and vegetation yield can derive information to help conserve water resources in grassland ecosystems in arid and semi-arid regions.In this study,the interactions of precipitation,ET_(0),and vegetation yield in Darhan Muminggan Joint Banner(DMJB),a desert steppe in Inner Mongolia Autonomous Region,China were explored using two-dimensional(2D)and three-dimensional(3D)joint distribution models.Three types of Copula functions were applied to quantitatively analyze the joint distribution probability of different combinations of precipitation,ET_(0),and vegetation yield.For the precipitation–ET_(0)dry–wet type,the 2D joint distribution probability with precipitation≤245.69 mm/a or ET_(0)≥959.20 mm/a in DMJB was approximately 0.60,while the joint distribution probability with precipitation≤245.69 mm/a and ET_(0)≥959.20 mm/a was approximately 0.20.Correspondingly,the joint return period that at least one of the two events(precipitation was dry or ET_(0)was wet)occurred was 2 a,and the co-occurrence return period that both events(precipitation was dry and ET_(0)was wet)occurred was 5 a.Under this condition,the interval between dry and wet events would be short,the water supply and demand were unbalanced,and the water demand of vegetation would not be met.In addition,when precipitation remained stable and ET_(0)increased,the 3D joint distribution probability that vegetation yield would decrease due to water shortage in the precipitation–ET_(0)dry–wet years could reach up to 0.60–0.70.In future work,irrigation activities and water allocation criteria need to be implemented to increase vegetation yield and the safety of water resources in the desert steppe of Inner Mongolia. 展开更多
关键词 PRECIPITATION reference evapotranspiration vegetation yield Copula functions desert steppe dry and wet events Inner Mongolia
下载PDF
Estimating Evapotranspiration Using Chloride Mass Balance in a New Mexico Paired Basin Study 2009-2019
5
作者 Amy C. Lewis Daniel Cadol 《Journal of Water Resource and Protection》 CAS 2023年第4期115-129,共15页
A paired basin study in the upper Santa Fe River watershed following forest thinning and prescribed burns successfully measured water budget components in a treated and an untreated (control) basin. The paired basin s... A paired basin study in the upper Santa Fe River watershed following forest thinning and prescribed burns successfully measured water budget components in a treated and an untreated (control) basin. The paired basin study was established to investigate questions that have arisen regarding changes in water yield from forest treatments. Precipitation, stream flow, soil moisture, and chloride concentrations in precipitation and stream flow were measured to quantify the water budget components. The results from eleven years of data collection and analysis have a high degree of confidence with respect to measuring the water budget components based on the mass balance of water and chloride. The differences in the geologic structure and topography between the two paired basins appeared to impact the water budgets more than the forest treatments, except during periods when winter precipitation and snowmelt represented a significant component of inflow. Although this paired basin study was not able to portray a simple relationship between forest thinning and water yield, the chloride concentration methodology used to estimate evapotranspiration (ET) was successful. These detailed observations of chloride deposition and transport characteristics may be relevant for other researchers working in forested basins with substantial ET. ET rates were estimated by examining the cycle of chloride entering and exiting each basin over six integration periods. ET was estimated to be about 90% to 94% of precipitation in the treated basin and 77% to 86% in the control basin. The higher ET in the treated basin both before and after forest treatments may be due to the much greater area of west-facing hillslopes in the treated basin, which receive warm afternoon sun, and the greater area of rock cover in the control basin. Variation in the chloride concentration of collected precipitation samples from different sites indicates that horizontal precipitation of chloride in the tree canopy is an important consideration when using the chloride mass balance approach to calculate water budget components. 展开更多
关键词 evapotranspiration Chloride Mass Balance Paired Basins Water Budgets Horizontal Precipitation
下载PDF
Estimation of the Actual Evapotranspiration by the SEBAL Method in the Irrigated Rice Perimeter of Zatta (Yamoussoukro—Côte d’Ivoire)
6
作者 Junias Léandre Kra Moïse Botou Adahi +3 位作者 Brice Arthur Konan-Waidhet Jean-Yves Konan N’Guessan Joël Doyéré Koné Emmanuel Nogbou Assidjo 《Journal of Water Resource and Protection》 2023年第10期539-556,共18页
In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other... In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other regions of the country, the Yamoussoukro district is confronted with the phenomenon of evapotranspiration (ET). This is a very important component that comes into play in the water balance but also in the calculation of the water needs of agricultural crops. Consequently, its estimation is of paramount importance in research related to the rational management of water resources, particularly agricultural water. The objective of this study was to analyze the spatio-temporal distribution of actual evapotranspiration (AET) as a function of land cover and land use. The methodology used is based on the SEBAL model which uses remote sensing (Landsat 8_OLI/TIRS) and climatic data to estimate actual evapotranspiration and analyze the spatio-temporal distribution of AET. The results reveal that the AET varied from 0 to 5.44 mm/day over the period from December 2019 to February 2020 with an average value of 4.92 mm/day. The highest average values occurred for water bodies (4.90 mm/day) and flooded vegetation (4.88 mm/day) while the lowest values occurred in residential areas (2.04 mm/day). Furthermore, the results show that the difference between the SEBAL model and the FAO-Penman-Monteith method is minimal with an average RMSE of 0.36 mm/day for all the satellite images. This study demonstrates the considerable potential of remote sensing for the characterization and estimation of spatial evapotranspiration in the Zatta irrigated rice-growing area. 展开更多
关键词 evapotranspiration Water Balance Rational Management Remote Sensing SEBAL Model
下载PDF
Environmental and canopy conditions regulate the forest floor evapotranspiration of larch plantations 被引量:1
7
作者 Zebin Liu Yanhui Wang +2 位作者 Pengtao Yu Lihong Xu Songping Yu 《Forest Ecosystems》 SCIE CSCD 2022年第5期606-616,共11页
Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotransp... Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotranspiration(FE),which is an important component of forest evapotranspiration,accounts for a large proportion of the water consumed in arid forests.Elucidating how environmental and canopy conditions impact FE has important significance for guiding integrated forest-water management in a changing environment.Methods:The microlysimeter(ML)-measured evapotranspiration(FE_(ML)),reference evapotranspiration(ET_(o)),volumetric soil moisture(VSM),and canopy leaf area index(LAI)were monitored in a Larix principis-rupprechtii plantation located in the semi-humid Liupan Mountains of Northwest China in 2019(June–September)and 2021(May–September).The response functions of the FE coefficient(the ratio of daily FEML to ET_(o))to the individual factors of VSM and LAI were determined using upper boundary lines of scatter diagrams of measured data.The framework of the daily FE(FE_(ML))model was established by multiplying the response functions to individual factors and then calibrated and validated using measured data to assess the FE response to environmental and canopy conditions.Results:(1)The FE coefficient increased first rapidly and then slowly with rising VSM but decreased slowly with rising LAI.(2)The simple daily FE(FE_(ML))model developed by coupling the impacts of ET_(o),LAI,and VSM in this study performed well for predicting FE.(3)The impacts of ET_(o),LAI,and VSM were quantified using the FE(FE_(ML))model,e.g.,at a given VSM,the impact of ETo on FE increased obviously with decreasing LAI;at a given ET_(o),the impact of LAI on FE increased with rising VSM.(4)In the two study years,when directly using the microlysimeter measurement,the real FE on the forest floor was overestimated when the VSM in microlysimeters was above 0.215 but underestimated below 0.215 due to the difference in VSM from the forest floor.Thus,the VSM on the forest floor should be input into the FE model for estimating the real FE on the forest floor.Conclusions:The daily FE of larch plantation is controlled by three main factors of environmental(ET_(o) and VSM)and canopy conditions(LAI).The variation in daily FE on the forest floor can be well estimated using the simple FE model coupling the effects of the three main factors and by inputting the VSM on the forest floor into the model to avoid the errors when directly using the microlysimeter measurement with different VSMs from the forest floor.The developed FE model and suggested prediction approach are helpful to estimate the FE response to changing conditions,and to guide forest management practices when saving water by thinning is required. 展开更多
关键词 Larch plantation Forest floor evapotranspiration Reference evapotranspiration Soil water content Canopy structure
下载PDF
Application of Spatially Distributed Calibrated Hydrological Model in Evapotranspiration Simulation of Three Gorges Reservoir Area of China:A Case Study in the Madu River Basin
8
作者 CHEN Junhong ZHANG Lihua +1 位作者 CHEN Peipei MA Yongming 《Chinese Geographical Science》 SCIE CSCD 2022年第6期1083-1098,共16页
Evapotranspiration(ET)is the key to the water cycle process and an important factor for studying near-surface water and heat balance.Accurately estimating ET is significant for hydrology,meteorology,ecology,agricultur... Evapotranspiration(ET)is the key to the water cycle process and an important factor for studying near-surface water and heat balance.Accurately estimating ET is significant for hydrology,meteorology,ecology,agriculture,etc..This paper simulates ET in the Madu River Basin of Three Gorges Reservoir Area of China during 2009-2018 based on the Soil and Water Assessment Tool(SWAT)model,which was calibrated and validated using the MODIS(Moderate-resolution Imaging Spectroradiometer)/Terra Net ET 8-Day L4 Global 500 m SIN Grid(MOD16A2)dataset and measured ET.Two calibration strategies(lumped calibration(LC)and spatially distributed calibration(SDC))were used.The basin was divided into 34 sub-basins,and the coefficient of determination(R^(2))and NashSutcliffe efficiency coefficient(NSE)of each sub-basin were greater than 0.6 in both the calibration and validation periods.The R2 and NSE were higher in the validation period than those in the calibration period.Compared with the measured ET,the accuracy of the model on the daily scale is:R^(2)=0.704 and NSE=0.759(SDC results).The model simulation accuracy of LC and SDC for the sub-basin scale was R^(2)=0.857,R^(2)=0.862(monthly)and R^(2)=0.227,R^(2)=0.404(annually),respectively;for the whole basin scale was R^(2)=0.902,R^(2)=0.900(monthly)and R^(2)=0.507 and R^(2)=0.519(annually),respectively.The model performed acceptably,and SDC performed the best,indicating that remote sensing data can be used for SWAT model calibration.During 2009-2018,ET generally increased in the Madu River Basin(SDC results,7.21 mm/yr),with a multiyear average value of 734.37 mm/yr.The annual ET change rate for the sub-basin was relatively low upstream and downstream.The linear correlation analysis between ET and meteorological factors shows that on the monthly scale,precipitation,solar radiation and daily maximum and minimum temperature were significantly correlated with ET;annually,solar radiation and wind speed had a moderate correlation with ET.The correlation between maximum temperature and ET is best on the monthly scale(Pearson correlation coefficient R=0.945),which may means that the increasing ET originating from increasing temperature(global warming).However,the sub-basins near Shennongjia Nature Reserve that are in upstream have a negative ET change rate,which means that ET decreases in these sub-basins,indicating that the’Evaporation Paradox’exists in these sub-basins.This study explored the potential of remote-sensing-based ET data for hydrological model calibration and provides a decision-making reference for water resource management in the Madu River Basin. 展开更多
关键词 soil and water assessment tool distributed simulation for evapotranspiration model calibration remote sensing evapotranspiration products Madu River Basin
下载PDF
Comparison of three evapotranspiration models with eddy covariance measurements for a Populus euphratica Oliv.forest in an arid region of northwestern China 被引量:12
9
作者 GAO Guanlong ZHANG Xiaoyou +1 位作者 YU Tengfei LIU Bing 《Journal of Arid Land》 SCIE CSCD 2016年第1期146-156,共11页
The accurate estimation of evapotranspiration(ET) in arid regions is important for improving the water use efficiency of vegetation. Based on successive observations from May to October of 2014, we estimated the ET of... The accurate estimation of evapotranspiration(ET) in arid regions is important for improving the water use efficiency of vegetation. Based on successive observations from May to October of 2014, we estimated the ET of a Populus euphratica Oliv. forest during the growing season in an extremely arid region using the PM(Penman-Monteith), SW(Shuttleworth-Wallace) and SSW(an improved canopy transpiration model) models. Estimated ET values were compared with those of the eddy covariance measurements. Results indicated that the actual ET of the P. euphratica forest was always overestimated by the PM model. The accuracy of the SW model was higher than that of the PM model. However, some data were not easily obtained because of the complicated structure of the SW model. The newly proposed SSW model gave the most accurate ET values, and its accuracy was higher at hourly than at daily time scale. In conclusion, the SSW model is more suitable for sparse vegetation system at large scales in extremely arid regions. 展开更多
关键词 evapotranspiration PENMAN-MONTEITH MODEL Shuttleworth-Wallace MODEL SSW MODEL
下载PDF
Actual evapotranspiration of subalpine meadows in the Qilian Mountains, Northwest China 被引量:8
10
作者 GAO Yunfei ZHAO Chuanyan +6 位作者 Muhammad W ASHIQ WANG Qingtao RONG Zhanlei LIU Junjie MAO Yahua GUO Zhaoxia WANG Wenbin 《Journal of Arid Land》 SCIE CSCD 2019年第3期371-384,共14页
As a main component in water balance,evapotranspiration(ET)is of great importance for water saving,especially in arid and semi-arid areas.In this study,the FAO(Food and Agriculture Organization)Penman-Monteith model w... As a main component in water balance,evapotranspiration(ET)is of great importance for water saving,especially in arid and semi-arid areas.In this study,the FAO(Food and Agriculture Organization)Penman-Monteith model was used to estimate the magnitude and temporal dynamics of reference evapotranspiration(ET0)in 2014 in subalpine meadows of the Qilian Mountains,Northwest China.Meanwhile,actual ET(ETc)was also investigated by the eddy covariance(EC)system.Results indicated that ETc estimated by the EC System was 583 mm,lower than ET0(923 mm)estimated by the FAO Penman-Monteith model in 2014.Moreover,ET0 began to increase in March and reached the peak value in August and then declined in September,however,ETc began to increase from April and reached the peak value in July,and then declined in August.Total ETc and ET0 values during the growing season(from May to September)were 441 and 666 mm,respectively,which accounted for 75.73%of annual cumulative ETc and 72.34%of annual cumulative ET0,respectively.A crop coefficient(kc)was also estimated for calculating the ETc,and average value of kc during the growing season was 0.81(ranging from 0.45 to 1.16).Air temperature(Ta),wind speed(u),net radiation(Rn)and soil temperature(Ts)at the depth of 5 cm and aboveground biomass were critical factors for affecting kc,furthermore,a daily empirical kc equation including these main driving factors was developed.Our result demonstrated that the ETc value estimated by the data of kc and ET0 was validated and consistent with the growing season data in 2015 and 2016. 展开更多
关键词 actual evapotranspiration reference evapotranspiration CROP coefficient METEOROLOGICAL FACTORS biotic FACTORS
下载PDF
Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems 被引量:6
11
作者 Xia ZHANG Mingxing LI +3 位作者 Zhuguo MA Qing YANG Meixia LV Robin Clark 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第11期1273-1287,共15页
Ecosystems have increasingly been subject to the challenge of heavy drought under global warming. To quantitatively evaluate the impacts of drought on ecosystems, it is necessary to develop a drought index that can se... Ecosystems have increasingly been subject to the challenge of heavy drought under global warming. To quantitatively evaluate the impacts of drought on ecosystems, it is necessary to develop a drought index that can sensitively depict the response of vegetation to drought evolution at a biological time scale. For the ability of direct connection between climate and ecosystem by deficit of evapotranspiration, in the present study, a drought index was defined based on standardized evapotranspiration deficit (SEDI), according to the difference between actual and potential evapotranspiration, to meet the need for highlighting drought impacts on ecological processes. Comparisons with traditional indices show that SEDI can reasonably detect droughts and climatic dry and wet transitions, especially at a monthly time scale, and can also regenerate long-term trends. Moreover, SEDI can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with the indices of precipitation and temperature. SEDI is more practical than the precipitation and temperature indices to highlight signals of biological effects in climate droughts. Hence, it has potential for use in assessments of climate change and its impact on ecosystems. 展开更多
关键词 evapotranspiration DROUGHT INDEX vegetation ECOSYSTEM leaf area INDEX climate change
下载PDF
Evapotranspiration of a Populus euphratica Oliv. forest and its controlling factors in the lower Heihe River Basin,Northwest China 被引量:6
12
作者 TengFei Yu Qi Feng +2 位作者 JianHua Si XiaoYou Zhang ChunYan Zhao 《Research in Cold and Arid Regions》 CSCD 2017年第2期175-182,共8页
Evapotranspiration(ET) within an ecosystem is crucial for the water-limited environment that currently lacks adequate quantification in the arid region of Northwest China, mainly covered by phreatophytes, such as the ... Evapotranspiration(ET) within an ecosystem is crucial for the water-limited environment that currently lacks adequate quantification in the arid region of Northwest China, mainly covered by phreatophytes, such as the Populus euphratica Oliv. tree and the Tamarix ramosissima Ledeb. shrub species. Accordingly, ET was measured for an entire year using eddy covariance(EC) in P. euphratica stands in the lower Heihe River Basin, Northwest China. During the growing season,the total ET was 850 mm, with a mean of 4.0 mm/d, which is obviously more than that observed at tree-level and standlevel scales, which was likely due to the different level of soil evaporation induced by irrigation via water conveyance.Factors associated with ET fall into either environmental or plant eco-physiological categories. Environmental factors account for at least 79% variation of ET, and the linear relationship between ET and the groundwater table(GWT) revealed the potential water use of P. euphratica forests under the non-water stress condition with the GWT less than 3 m deep.Plant eco-physiological parameters, specifically the leaf area index(LAI), have direct impact on the seasonal pattern of ET, which provides a valuable reference to the wide-area estimates of ET for riparian forests by using LAI. In conclusion,P. euphratica forests have high water use after water conveyance, which may be the result of long-term adapting to local climates and limited water availability. 展开更多
关键词 evapotranspiration eddy covariance POPULUS EUPHRATICA Oliv. FOREST Heihe River Basin
下载PDF
Sensitivity of Potential Evapotranspiration Estimation to the Thornthwaite and Penman–Monteith Methods in the Study of Global Drylands 被引量:6
13
作者 Qing YANG Zhuguo MA +1 位作者 Ziyan ZHENG Yawen DUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第12期1381-1394,共14页
Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(... Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations.The most widely accepted definition of the term dryland is a ratio,called the Surface Wetness Index(SWI),of annual precipitation to potential evapotranspiration(PET)being below 0.65.PET is commonly estimated using the Thornthwaite(PET Th)and Penman–Monteith equations(PET PM).The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM.Results showed vast differences between PET Th and PET PM;however,the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands,except in North America,with high correlation coefficients ranging from 0.58 to 0.89.It was found that,during 1901–2014,global hyper-arid and semi-arid regions expanded,arid and dry sub-humid regions contracted,and drylands underwent interdecadal fluctuation.This was because precipitation variations made major contributions,whereas PET changes contributed to a much lesser degree.However,distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found.This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry–wet transition zone.Additionally,the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming,and the Thornthwaite method was found to be increasingly less applicable under climate change. 展开更多
关键词 potential evapotranspiration global drylands Thornthwaite Penman–Monteith
下载PDF
Attribution analysis based on Budyko hypothesis for land evapotranspiration change in the Loess Plateau, China 被引量:5
14
作者 HE Guohua ZHAO Yong +6 位作者 WANG Jianhua GAO Xuerui HE Fan LI Haihong ZHAI Jiaqi WANG Qingming ZHU Yongnan 《Journal of Arid Land》 SCIE CSCD 2019年第6期939-953,共15页
Land evapotranspiration(ET) is an important process connecting soil, vegetation and the atmosphere, especially in regions that experience shortage in precipitation.Since 1999, the implementation of a large-scale veget... Land evapotranspiration(ET) is an important process connecting soil, vegetation and the atmosphere, especially in regions that experience shortage in precipitation.Since 1999, the implementation of a large-scale vegetation restoration project has significantly improved the ecological environment of the Loess Plateau in China.However, the quantitative assessment of the contribution of vegetation restoration projects to long-term ET is still in its infancy.In this study, we investigated changes in land ET and associated driving factors from 1982 to 2014 in the Loess Plateau using Budyko-based partial differential methods.Overall, annual ET slightly increased by 0.28 mm/a and there were no large fluctuations after project implementation.An attribution analysis showed that precipitation was the driving factor of inter-annual variability of land ET throughout the study period;the average impacts of precipitation, potential evapotranspiration, and vegetation restoration on ET change were 61.5%, 11.5% and 26.9%, respectively.These results provide an improved understanding of the relationship between vegetation condition change and climate variation on terrestrial ET in the study area and can support future decision-making regarding water resource availability. 展开更多
关键词 climate change VEGETATION evapotranspiration control factor arid region
下载PDF
Future changes in rainfall, temperature and reference evapotranspiration in the central India by least square support vector machine 被引量:4
15
作者 Sananda Kundu Deepak Khare Arun Mondal 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第3期583-596,共14页
Climate change affects the environment and natural resources immensely.Rainfall,temperature and evapotranspiration are major parameters of climate affecting changes in the environment.Evapotranspiration plays a key ro... Climate change affects the environment and natural resources immensely.Rainfall,temperature and evapotranspiration are major parameters of climate affecting changes in the environment.Evapotranspiration plays a key role in crop production and water balance of a region,one of the major parameters affected by climate change.The reference evapotranspiration or ETo is a calculated parameter used in this research.In the present study,changes in the future rainfall,minimum and maximum temperature,and ETo have been shown by downscaling the HadCM3(Hadley Centre Coupled Model version 3) model data.The selected study area is located in a part of the Narmada river basin area in Madhya Pradesh in central India.The downscaled outputs of projected rainfall,ET_0 and temperatures have been shown for the 21 st century with the HADCM3 data of A2 scenario by the Least Square Support Vector Machine(LS-SVM)model.The efficiency of the LS-SVM model was measured by different statistical methods.The selected predictors show considerable correlation with the rainfall and temperature and the application of this model has been done in a basin area which is an agriculture based region and is sensitive to the change of rainfall and temperature.Results showed an increase in the future rainfall,temperatures and ETo.The temperature increase is projected in the high rise of minimum temperature in winter time and the highest increase in maximum temperature is projected in the pre-monsoon season or from March to May.Highest increase is projected in the 2080 s in 2081-2091 and 2091-2099 in maximum temperature and 2091-2099 in minimum temperature in all the stations.Winter maximum temperature has been observed to have increased in the future.High rainfall is also observed with higher ETo in some decades.Two peaks of the increase are observed in ET_0 in the April-May and in the October.Variation in these parameters due to climate change might have an impact on the future water resource of the study area,which is mainly an agricultural based region,and will help in proper planning and management. 展开更多
关键词 RAINFALL TEMPERATURE Reference evapotranspiration(ET0) DOWNSCALING Least Square Support Vector Machine (LS-SVM)
下载PDF
Assessing the spatiotemporal distributions of evapotranspiration in the Three Gorges Reservoir Region of China using remote sensing data 被引量:2
16
作者 MA Ze-zhong RAY Ram L HE Yi-ping 《Journal of Mountain Science》 SCIE CSCD 2018年第12期2676-2692,共17页
Evapotranspiration(ET) is a critical component of the global hydrological cycle, and it has a large impact on water resource management as it affects the availability of freshwater resources. It is important to unders... Evapotranspiration(ET) is a critical component of the global hydrological cycle, and it has a large impact on water resource management as it affects the availability of freshwater resources. It is important to understand the hydrological cycle for the water resources planning and management. This study used Moderate Resolution Imaging Spectroradiometer(MODIS) satellite derived ET, and potential evapotranspiration(PET) and Tropical Rainfall Measuring Mission(TRMM) satellite derived precipitation datasets to assess the spatial and temporal distributions of ET, PET, and precipitation during the study period at Three Gorges Reservoir(TGR) region. Based on the topographic variations and land-use/land-cover distributions, the study region which includes five counties of Hubei Province and nineteen counties of Chongqing Municipality was divided into four study zones. The ET and precipitation data were evaluated using in situ observations. The ET, PET, and precipitation data were compared to analyze the spatial and long-term(2001-2016) temporal distributions of average annual ET, PET, and precipitation, and to understand the relationships between them in the study region. The results showed that each selected zone had highest ET at the counties with the Yangtze River passing through whereas lowest at the counties which were located away from the river. Results also showed increasing trends in ET and PET from south-west to north-east in the study region. Analysis showed TGR had a significant impact on spatial and temporal distributions of ET and PET in the study region. Therefore, this study helps to understand the impact of TGR on spatial and temporal distributions of ET and PET during and after the construction. 展开更多
关键词 evapotranspiration Precipitation TROPICAL RAINFALL Measuring Mission (TRMM) MODERATE Resolution Imaging SPECTRORADIOMETER (MODIS) Three Gorges Reservoir Potential evapotranspiration
原文传递
Estimation of Evapotranspiration from Faber Fir Forest Ecosystem in the Eastern Tibetan Plateau of China Using SHAW Model 被引量:4
17
作者 Zhifang Yin Hua Ouyang +3 位作者 Xingliang Xu Caiping Zhou Feng Zhang Bin Shao 《Journal of Water Resource and Protection》 2010年第2期143-153,共11页
Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydro... Understanding the hydrological processes of forest ecosystems in Tibetan Plateau is crucial for protecting water resources and the environment, especially considering that evapotranspiration is the most dominant hydrologic process in most forest systems. SHAW, as a physically based, hydrological model, provides a useful tool for understanding and analyzing evapotranspiration processes. Using the measured data of a faber fir forest ecosystem in eastern Tibetan Plateau, this paper assessed the model performance in simulating evapotranspiration and variability and transferability of the model parameters. Comparison of the simulated results by SHAW to the measured data showed that SHAW performed satisfactorily. Based on analyzing the simulated results by the calibrated and validated SHAW, some ET characteristics of faber fir forest ecosys-tem in the eastern Tibetan Plateau were found: 1) Daily plant transpiration is low, and daily ET mainly comes from surface evaporation including canopy, litter and soil evaporation. Peak ET rate was approxi-mately 4mm/day, occurring around late July. 2) Solar radiation is the most important factor accounting for daily ET variation, while air temperature is the secondary, wind speed and air relative humidity are minor and soil water storage is the least important among all the related factors. 3) The ratio of annual ET to pre-cipitation for the faber fir forest ecosystem in eastern Tibetan Plateau is low (18%) compared with the other forest ecosystems owing to high-elevation, high atmospheric humidity and low annual temperature. 展开更多
关键词 evapotranspiration FABER FIR Forest TIBETAN PLATEAU SHAW
下载PDF
Cryosphere evapotranspiration in the Tibetan Plateau:A review 被引量:3
18
作者 KunXin Wang YinSheng Zhang +2 位作者 Ning Ma YanHong Guo YaoHui Qiang 《Research in Cold and Arid Regions》 CSCD 2020年第6期355-370,共16页
Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system.Meanwhile,the ... Land surface actual evapotranspiration is an important process that influences the Earth's energy and water cycles and determines the water and heat transfer in the soil-vegetation-atmosphere system.Meanwhile,the cryosphere's hydrological process is receiving extensive attention,and its water problem needs to be understood from multiple perspectives.As the main part of the Chinese cryosphere,the Tibetan Plateau faces significant climate and environmental change.There are active interaction and pronounced feedback between the environment and ETa in the cryosphere.This article mainly focuses on the research progress of ETa in the Tibetan Plateau.It first reviews the ETa process,characteristics,and impact factors of typical underlying surfaces in the Tibetan Plateau(alpine meadows,alpine steppes,alpine wetlands,alpine forests,lakes).Then it compares the temporal and spatial variations of ETa at different scales.In addition,considering the current greening of cryosphere vegetation due to climate change,it discusses the relationship between vegetation greening and transpiration to help clarify how vegetation activities are related to the regional water cycle and surface energy budget. 展开更多
关键词 cryosphere evapotranspiration Tibetan Plateau TRANSPIRATION EVAPORATION
下载PDF
Comparison of Ten Potential Evapotranspiration Models and Their Attribution Analyses for Ten Chinese Drainage Basins 被引量:2
19
作者 Ruiheng XIE Aihui WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第9期959-974,共16页
Potential evapotranspiration(EPET)is usually calculated by empirical methods from surface meteorological variables,such as temperature,radiation and wind speed.The in-situ measured pan evaporation(ETpan)can also be us... Potential evapotranspiration(EPET)is usually calculated by empirical methods from surface meteorological variables,such as temperature,radiation and wind speed.The in-situ measured pan evaporation(ETpan)can also be used as a proxy for EPET.In this study,EPET values computed from ten models are compared with observed ETpan data in ten Chinese river basins for the period 1961−2013.The daily observed meteorological variables at 2267 stations are used as the input to those models,and a ranking scheme is applied to rank the statistical quantities(ratio of standard deviations,correlation coefficient,and ratio of trends)between ETpan and modeled EPET in different river basins.There are large deviations between the modeled EPET and the ETpan in both the magnitude and the annual trend at most stations.In eight of the basins(except for Southeast and Southwest China),ETpan shows decreasing trends with magnitudes ranging between−0.01 mm d−1 yr−1 and−0.03 mm d−1 yr−1,while the decreasing trends in modeled EPET are less than−0.01 mm d−1 yr−1.Inter comparisons among different models in different river basins suggest that PETHam1 is the best model in the Pearl River basin,PETHam2 outperforms other models in the Huaihe River,Yangtze River and Yellow River basins,and PETFAO is the best model for the remaining basins.Sensitivity analyses reveal that wind speed and sunshine duration are two important factors for decreasing EPET in most basins except in Southeast and Southwest China.The increasing EPET trend in Southeast China is mainly attributed to the reduced relative humidity. 展开更多
关键词 potential evapotranspiration model pan evaporation model comparison sensitivity analysis China
下载PDF
Simulation of Evapotranspiration Based on BEPS-TerrainLab V2.0 from 1990 to 2018 in the Dajiuhu Basin 被引量:2
20
作者 WU Zongfan ZHANG Lihua +4 位作者 LIU Dandan ZHANG Kang ZHU Zhiru FU Yasheng MA Yongming 《Chinese Geographical Science》 SCIE CSCD 2020年第6期1095-1110,共16页
Accurate estimations of evapotranspiration(ET)are essential for understanding land-atmosphere coupling and atmosphere-underlying surface energy and water vapor exchanges.Based on input data processing,this paper simul... Accurate estimations of evapotranspiration(ET)are essential for understanding land-atmosphere coupling and atmosphere-underlying surface energy and water vapor exchanges.Based on input data processing,this paper simulates the temporal and spatial variation of ET in the Dajiuhu Basin from 1990 to 2018 using the BEPS-Terrain Lab V2.0 model.Compared with the ET measured by an eddy covariance(EC)tower,the model explained 80.1%of the ET variation.From 1990 to 2018,the average annual ET in the Dajiuhu Basin was 1262.7 mm/yr indicating a downward trend(–27.12 mm/yr).In 2005,a sudden change point was observed based on the Mann-Kendall(MK)test and 3-year moving t-test.Around 2005,the downward trend in ET slowed and the proportional trend of ET to precipitation changed from upward trend to downward trend.Regarding spatial distribution,the ET in the basin’s central part was smaller than that in the basin’s surrounding area,the ET of the southern slope was higher than that of the northern slope,and the decrease in the ET rate on the sunny side was lower than that on the shady side.ET decreased as the elevation increased,with the fastest decrease observed between 2184 and 2384 m.For different landcover types,the average ET exhibited the following order:deciduous forest>mixed forest>wetland>grass>agriculture land.Decreased solar radiation is the main reason for the decreased ET in the Dajiuhu Basin,followed by increased wind speed and relative humidity,which together contribute 83.9%to the ET trend.This paper provides a theoretical basis for the study of ET changes and the mechanism of ET and provides a decision-making reference for water resource management in the Dajiuhu Basin and even the South-to-North Water Transfer Project. 展开更多
关键词 evapotranspiration spatiotemporal pattern BEPS-TerrainLab V2.0 environmental factor Dajiuhu Basin
下载PDF
上一页 1 2 193 下一页 到第
使用帮助 返回顶部