A series of 9 soil samples were taken at a timber treatment site in SW France where Cu sulphate and chromated copper arsenate (CCA) have been used as wood preservatives (Sites P1 to P9) and one soil sample was col...A series of 9 soil samples were taken at a timber treatment site in SW France where Cu sulphate and chromated copper arsenate (CCA) have been used as wood preservatives (Sites P1 to P9) and one soil sample was collected at an adjacent site on the same soil type (Site P10). Copper was a major contaminant in all topsoils, varying from 65 (Soil P5) to 2600 mg Cu kg^-1 (Soil P7), exceeding background values for French sandy soils. As and Cr did not accumulate in soil, except at Site P8 (52 mg As kg^-1 and 87 mg Cr kg^-1) where CCA-treated posts were stacked. Soil ecotoxicity was assessed with bioassays using radish, lettuce, slug Arion rufus L., and earthworm Dendrobaena octaedra (Savigny). There were significantly differences in lettuce germination rate, lettuce leaf yield, radish root and leaf yields, slug herbivory, and earthworm avoidance. An additional bioassay showed higher negative impacts on bean shoot and root yields, Rhizobium nodule counts on Bean roots, and guaiacol peroxidase activity in primary Bean leaves for soil from Site PT, with and without fertilisation, than for soil from Site P10, despite both soils having a similar value for computed free ion Cu2+ activity in the soil solution (pCu^2+). Beans grown in soil from Site P7 that had been fertilised showed elevated foliar Cu content and phytotoxic symptoms. Soils from Sites P7 (treatment plant) and P6 (storage of treated utility poles) had the highest ecotoxicity, whereas soil from Site P10 (high organic matter content and cation exchange capacity) had the lowest. Except at Site P10, the soil factor pCu^2+ computed with soil pH and total soil Cu could be used to predict soil ecotoxicity.展开更多
Ecotoxicity and bioavailability of cadmium (Cd) to the maize (Zea mays L.) and the soybean (Glycine max (L.) Merr.) were investigated by acute toxicity experiment in the laboratory with black soil. Ecotoxicity...Ecotoxicity and bioavailability of cadmium (Cd) to the maize (Zea mays L.) and the soybean (Glycine max (L.) Merr.) were investigated by acute toxicity experiment in the laboratory with black soil. Ecotoxicity and bioavailability of Cd were quantified by calculating the median effective concentration (ECs0) and bioaccumulation factor (BAF). The measurement endpoints used were seed germination and seedling growth (shoot and root). The results showed that concentrations of Cd in the soil had adverse effect on the growth of roots and shoots. Seed germination was not the sensitive indicator for the ecotoxicity of Cd in the soil, while the growth of roots was the most sensitive measurement endpoint. Absorbability and transport of Cd in plants depended on the test crop species and Cd concentrations in the soil. The maize retains more Cd in its roots, while the soybean transports more Cd to the shoots from roots.展开更多
[Objectives]This study was conducted on the effects of veterinary antibiotics on pasture growth.[Methods]With alfalfa ( Medicago sativa L.) as an experimental material and oxytetracycline,chlortetracycline and enroflo...[Objectives]This study was conducted on the effects of veterinary antibiotics on pasture growth.[Methods]With alfalfa ( Medicago sativa L.) as an experimental material and oxytetracycline,chlortetracycline and enrofloxacin as experimental contaminants,the effects of the three veterinary antibiotics on the germination percentage,germination energy,germination index and vigor index of alfalfa seeds and on the plant height and root length of alfalfa seedlings were study at the concentration gradient of 50,100,150,200 and 250 mg/L,respectively.[Results]The oxytetracycline treatments had no significant effect on the germination percentage of alfalfa seeds,but promoted its germination index.The chlortetracycline treatment solutions and enrofloxacin treatment solutions promoted the germination percentage,germination energy and germination index of alfalfa.The three antibiotics significantly inhibited the vigor index of alfalfa seeds,and had significant inhibitory effects on root length and plant height.[Conclusions]These results provide an important basis for studying the ecotoxicity of veterinary antibiotics on pasture.展开更多
Nowadays, microalgae are particularly used to assess the environmental impact of contaminants in aquatic systems. Naturally present in some algal species, bioluminescence is highly used in application fields related t...Nowadays, microalgae are particularly used to assess the environmental impact of contaminants in aquatic systems. Naturally present in some algal species, bioluminescence is highly used in application fields related to environmental monitoring. Bioluminescent dinoflagellates have played a pivotal role in this domain. When exposed to heavy metals or toxic organic compounds, bioluminescent dinoflagellates have the capacity to decrease light emission. In addition, new molecular tools allow the possibility to produce genetically modified microorganisms which are able to perform luminescence. Combined with the luciferase reporter gene, two main genetic constructions can be employed. Activation of a specific inducible promoter induces the luminescence gene transcription and this signal increases over time. Constitutive promoters result in a high basal expression level of the reporter gene. During exposure to a potential toxic pollutant, the basal expression level will decrease due to the toxic effect. Toxicity bioassays based on engineered luminescent Chlorophyta microalgae are among the most sensitive tests and are an invaluable complement to classical toxicity assays.展开更多
A series of N-acetylated cationic gemini surfactants (3a-e) having dimeric structures derived from tertiary amines were synthesized. Their antifungal potency and surface properties were determined. It also studied the...A series of N-acetylated cationic gemini surfactants (3a-e) having dimeric structures derived from tertiary amines were synthesized. Their antifungal potency and surface properties were determined. It also studied the acute toxicity of the molecule with the best performance and the best water solubility (3e) through Chlorella vulgaris and Daphnia magna bioassays. The results were compared to those obtained for a commercially available reference compound 2-(thiocyanomethylthio) benzothiazole (TCMTB). Parameters such as surface tension (ϒCMC), critical micelle concentration (CMC), surface excess concentration (Γ), and area per molecule (A) were determined. The resulting values indicated that the five gemini surfactants are characterized by good surface-active and self-aggregation properties. All surfactants were tested to evaluate their antifungal activity. Six fungal strains were used to conduct the study. The minimum inhibitory concentration (MIC) value was measured by the fungal growth inhibition. The results of the MICs were compared with two commercially available reference compounds (Fluconazole and TCMTB). The least active molecule was 3e, but 3b and 3d were found to be the most potent compounds with a similar activity for all strains. Candida albicans was the most sensitive one. In contrast, Aspergillus niger was resistant. Ecotoxicity of gemini 3e was assessed: the commercial formulation (TCMTB) was between three and four orders of magnitude more toxic than the gemini one for the biological species tested.展开更多
Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and s...Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and socio-economic processes. Addressing the question of the use of xanthates without considering their toxicity, and their decomposition process and products would be ecologically and healthily less sustainable. To date, related information is still dispersed and less known to the public. Therefore, this work provides a comprehensive overview of the existing information on the essentiality, fate, ecotoxicity, and health effects of xanthates and associated compounds. According to available information from scientific, technical, and professional circles, xanthates are diverse, usually with a carbon chain of two to six carbon atoms. They play a crucial role in the sectors of the mining and mineral processing industry, agriculture, wastewater treatment, metal protection, rubber vulcanization, the pharmaceutical industry, and medicine. Xanthates’ degradation under different factors and mechanisms, which determine their fate in the environment, leads to the formation of toxic substances, mainly carbon disulfide, carbonyl sulfide, hydrogen sulfide, and hydrogen peroxide. Xanthates and xanthates degradation products are seriously hazardous to humans, animals, soil and aquatic organisms, enzymatic system, etc. Simultaneous exposure to xanthates and metals results in the magnification or reduction of their toxicity level, depending on the exposed organisms. Such toxicological dimensions should attract more scientific and public attention for more safe production, use, storage, and disposal of xanthates. Due to the high affinity of xanthates for metal, xanthates-modified compounds are efficient metal chelating agents. Such a property should be explored to develop potentially low-cost and effective alternatives for metal removal and recovery from contaminated media. The same applies to developing appropriate methods for the evaluation and management of the simultaneous presence of xanthates and metals in the environment.展开更多
The monitoring of water bodies means the attempt of protecting vulnerable groups of organisms inhabiting streams and rivers. Industrial and domestic discharges may worsen the water quality and affect biological balanc...The monitoring of water bodies means the attempt of protecting vulnerable groups of organisms inhabiting streams and rivers. Industrial and domestic discharges may worsen the water quality and affect biological balance, structure and the functioning of the ecosystem. Cubat?o City, is one of the largest industrial centers in Brazil and in Latin America, where the constant discharge of effluents into Cubat?o River and its tributaries caused a degradation scenario in the hydrographic basin of the region. The objective of this study was to evaluate the acute and chronic effects of surface water from Cubat?o River and two of its tributaries (Perequê and Pil?es) by ecotoxicological assays. In addition, physical chemical parameters were analyzed. Ceriodaphnia dubia and Vibrio fischeri were exposed-organisms during the studied period. The study was conducted between 2010 and 2011 in four campaigns and nine sites along the basin of Cubat?o River. The ecotoxicity was measured by Vibrio fischeri bioluminescence, EC50 values ranging from 31.25% to 71.61%. In contrast, based on a bioequivalence t-test statistical analysis, the results obtained with Ceriodaphnia dubia revealed no toxicity in the sampling sites. A critical analysis of raw data of luminescence was carried out showing higher values during the 2nd campaign. From the numbers obtained for physical-chemical parameters P5 was far the worst due to chlorides, hardness and conductivity. From the Pearson correlation analysis carried out with toxicity to V. fischeri and the physical chemical parameters, the dissolved oxygen in water resulted in a moderate positive correlation. Sediment contamination was also demonstrated in the region.展开更多
The electroplating industry is the main source of 6:2 chlorinated polyfluorinated ether sulfonate(6:2 Cl-PFESA)pollution,which presents risks to human health and the environment.It is therefore crucial to develop effe...The electroplating industry is the main source of 6:2 chlorinated polyfluorinated ether sulfonate(6:2 Cl-PFESA)pollution,which presents risks to human health and the environment.It is therefore crucial to develop effective 6:2 Cl-PFESA degradation techniques.Persulfate oxidation is a potential treatment method for 6:2 Cl-PFESA due to its outstanding oxidative degradability following the generation of the sulfate radical(SO_(4)^(•−))and hydroxyl radical(•OH).It has proven difficult to acquire a full understanding of the reaction mechanism and formation of intermediate(IM)products through conventional experimental studies because they are costly and time-consuming.Therefore,a theoretical analysis method based on density functional theory(DFT)calculations was applied.The DFT results showed that electron transfer for the degradation of 6:2 Cl-PFESA could be initiated by the protonated sulfate radical(HSO_(4)•,ΔG≠SET=9.16 kcal/mol),rather than SO4•−(ΔG≠SET=41.60 kcal/mol).After desulfonation,the reaction underwent stepwise decarboxylation cycles under the action of•OH,leading to the elimination of the CF_(2) units until there was complete mineralization into HCl,HF,and CO_(2).Furthermore,the IMs and the end products of 6:2 Cl-PFESA were evaluated using ECOSAR and TEST software.The low bioaccumulation of the short-chain IMs meant that they could be considered safe in terms of ecotoxicity and health effects.This research determined the theoretical and mechanistic basis of the effects of persulfate in the treatment of water containing 6:2 Cl-PFESA,and its structural analogues.展开更多
This work assessed the impact of fuelling an automotive engine with palm biodiesel(pure,and two blends of 10%and 20%with diesel,B100,B10 and B20,respectively)operating under representative urban driving conditions on ...This work assessed the impact of fuelling an automotive engine with palm biodiesel(pure,and two blends of 10%and 20%with diesel,B100,B10 and B20,respectively)operating under representative urban driving conditions on 17 priority polycyclic aromatic hydrocarbon(PAH)compounds,oxidative potential of ascorbic acid(OP^(AA)),and ecotoxicity through D aphnia pulex mortality test.PM diluted with filtered fresh air(WD)gathered in a minitunel,and particulate matter(PM)collected directly from the exhaust gas stream(W/oD)were used for comparison.Results showed that PM collecting method significantly impact PAH concentration.Although all PAH appeared in both,WD and W/oD,higher concentrations were obtained in the last case.Increasing biodiesel concentration in the fuel blend decreased all PAH compounds,and those with 3 and 5 aromatic rings were the most abundant.Palm biodiesel affected both OP^(AA)and ecotoxicity.While B10 and B20 exhibited the same rate of ascorbic acid(AA)depletion,B100 showed significant faster oxidation rate during the first four minutes and oxidized 10%more AA at the end of the test.B100 and B20 were significantly more ecotoxic than B10.The lethal concentration LC50 for B10 was 6.13 mg/L.It was concluded that palm biodiesel decreased PAH compounds,but increased the oxidative potential and ecotoxicity.展开更多
The occurrence and impacts of emerging organic contaminants(EOCs)in the aquatic environment have gained widespread attention over the past two decades.Due to large number of potential contaminants,monitoring campaigns...The occurrence and impacts of emerging organic contaminants(EOCs)in the aquatic environment have gained widespread attention over the past two decades.Due to large number of potential contaminants,monitoring campaigns,treatment plants,and proposed regulations should preferentially focus on specific pollutants with the highest potential for ecological and human health effects.In the present study,a multi-criteria screening approach based on hazard and exposure potentials was developed for prioritization of 405 unregulated EOCs already present in Chinese surface water.Hazard potential,exposure potential,and risk quotients for ecological and human health effects were quantitatively analyzed and used to screen contaminants.The hazard potential was defined by contaminant persistence,bioaccumulation,ecotoxicity,and human health effects;similarly,the exposure potential was a function of contaminant concentration and detection frequency.In total,123 compounds passed the preselection process,which involved a priority index equal to the normalized hazard potential multiplied by the normalized exposure potential.Based on the prioritization scheme,11 compounds were identified as top-priority,and 37 chemicals were defined as high-priority.The results obtained by the priority index were compared with four other prioritization schemes based on exposure potential,hazard potential,or risk quotients for ecological effects or human health.The priority index effectively captured and integrated the results from the more simplistic prioritization schemes.Based on identified data gaps,four uncertainty categories were classified to recommend:①regular monitoring,derivation of environmental quality standards,and development of control strategies;②increased monitoring;③fortified hazard assessment;and④increased efforts to collect occurrence and toxicity data.Overall,20 pollutants were recommended as priority EOCs.The prioritized list of contaminants provides the necessary information for authoritative regulations to monitor,control,evaluate,and manage the risks of environmentally-relevant EOCs in Chinese surface water.展开更多
Ag3PO4 powders were prepared through a precipitation reaction between AgNO3 and precipitating agent solutions that were prepared by adjusting the amount of H3PO4 in the Na3PO4 solutions. The Ag3PO4 powders prepared fr...Ag3PO4 powders were prepared through a precipitation reaction between AgNO3 and precipitating agent solutions that were prepared by adjusting the amount of H3PO4 in the Na3PO4 solutions. The Ag3PO4 powders prepared from the precipitation solution with a pH of 6 showed the highest photocatalytic activity for decolorizing the methylene blue and rhodamine B dyes. These Ag3PO4 powders were further modified by the addition of KBr solutions to obtain AgBr/Ag3PO4 powders and these photocatalysts can decolorize the anionic dyes as reactive orange and methyl orange. The reactive species involved in the photocatalytic degradation process were evaluated for their inhibitory activity using the appropriate scavengers. After photocatalysis, mass spectrometry confirmed that the dyes were degraded to smaller molecules. The ecotoxicities of the dye solutions before and after treatment were evaluated by studying their ability to inhibit the growth of the bioindicator Chlorella vulgaris.展开更多
Rare earth elements(REE)are applied as micro-fertilizer in large scale in China and there is growing concern about the environmental effects of REE accumulation in soils. Accumulation of REE was simulated in lab by ad...Rare earth elements(REE)are applied as micro-fertilizer in large scale in China and there is growing concern about the environmental effects of REE accumulation in soils. Accumulation of REE was simulated in lab by adding REE to three soils and the survival of Pseudomonas fluorescence X16 strain marked with luxAB gene in soils was detected. Curvilinear regression method was applied to analyze the survival pattern. The stimulation values, EC_(50) and NOEC values for X16 strain were calculated to compare the toxic intensity of REE in different soils. The stimulation(peak)values in red soil, yellow fluovo-aquic soil and yellow cinnamon soil, are 11.55~18.08,(0~2.13), 2.37~4.62 mg·kg^(-1) , respectively. EC_(50) values are 13.47~39.12, 6.59~56.18, 372~1034 (mg·kg^(-1)), respectively.NOEC values are 5.62 ~21.41, 0.00~4.53, 133.3~327.1 mg·kg^(-1), respectively. Tangents values of regression equation of the survival of X16 strain in red soil are the maximum ones indicating that REE accumulation in red soil has stronger inhibitory effects than in other two soils. The soil order, reflecting toxic intensity of REE is as follows: red soil>yellow fluovic-aquic soil>yellow cinnamon soil.展开更多
The chemical composition of pectin production wastewater and its toxicity during biological treatment were investigated. Samples of wastewater from different steps of a pectin production wastewater biological treatmen...The chemical composition of pectin production wastewater and its toxicity during biological treatment were investigated. Samples of wastewater from different steps of a pectin production wastewater biological treatment plant were investigated including the influent of the treatment (1), after denitrification tank (2), after anaerobic treatment (3) and final effuent (4). The conventional physicochemical characteristics of samples did not indicate wastewater toxicity. However, toxicity assessments carried out on Vibrio fischeri and Scenedesmus subspicatus indicated low EC50 values. The fractionation of the samples using an XAD resin showed that the toxicity was associated with the organic matter. Wastewater apparent molecular mass distributions were 14.3, 25.0, 24.4 and 29.6 kDa for samples 1-4, respectively. Finally, characteristics of the sample by pyrolisis-gas chromatography-mass spectrometry (Py-CG-MS) demonstrated its polyphenolic nature and a 23% increase in the levels of such compounds after the first biological treatment step.展开更多
With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induc...With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induced by nano Fe3O4 on a model organism, Chlorella vulgaris (C. vulgaris) in aquatic environment, were studied. The results showed that Nano-Fe3O4 was toxic to C. vulgaris and affected its content of chlorophyll a, malonaldehyde and glutathione, CO2 absorption, net photosynthetic rate, superoxide dismutase activity and inhibition of hydroxyl radical generation. At higher concentrations, compared with the control group, the toxicity of nano-Fe3O4 was significantly different. It suggested that nano-Fe3O4 is ecotoxic to C. vulgaris in aquatic environment.展开更多
Ecotoxic effects of antibiotics or ammonium have been confirmed independently in aquatic animals,but few studies have investigated their combined effects.In aquaculture ecosystems,these pollutants frequently coexist,a...Ecotoxic effects of antibiotics or ammonium have been confirmed independently in aquatic animals,but few studies have investigated their combined effects.In aquaculture ecosystems,these pollutants frequently coexist,and often in high concentrations.In this study,the combined effects of antibiotic nitrofurazone and NH4 Cl on the population dynamics and growth rates of two species of ciliated protists,Euplotes vannus and Pseudokeronopsis rubra,were investigated.Profiles of the dose-responses were visualized,and interactions between the two pollutants were quantified by the response surface method(RSM).Results showed that 1)the dynamics of the population growth differed significantly between the testd ciliates and varied with the concentrations of the pollutants;2)the relative growth rate(RGR)of both ciliates decreased significantly with increased pollutant concentrations,while the difference in RGR between the two ciliates was not significant;3)RSM analysis demonstrated an additive effect of nitrofurazone and NH4 Cl on the RGR in both ciliates.In brief,ecotoxic effects can be caused by nitrofurazone and ammonium independently on the two test ciliates,and such effects can be strengthened when they present at the same time.These findings offer a valuable reference for evaluating combined ecotoxic effects caused by multiple pollutants in aquaculture ecosystems.展开更多
In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment cou...In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.展开更多
Among all contaminants of emerging interest,drugs are the ones that give rise to the greatest concern.Any of the multiple stages of the drug's life cycle(production,consumption and waste management)is a possible e...Among all contaminants of emerging interest,drugs are the ones that give rise to the greatest concern.Any of the multiple stages of the drug's life cycle(production,consumption and waste management)is a possible entry point to the different environmental matrices.Psychiatric drugs have received special attention because of two reasons.First,their use is increasing.Second,many of them act on phylogenetically highly conserved neuroendocrine systems,so they have the potential to affect many non-target organisms.Currently,wastewater is considered the most important source of drugs to the environment.Furthermore,the currently available wastewater treatment plants are not specifically prepared to remove drugs,so they reach practically all environmental matrices,even tap water.As drugs are designed to produce pharmacological effects at low concentrations,they are capable of producing ecotoxicological effects on microorganisms,flora and fauna,even on human health.It has also been observed that certain antidepressants and antipsychotics can bioaccumulate along the food chain.Drug pollution is a complicated and diffuse problem characterized by scientific uncertainties,a large number of stakeholders with different values and interests,and enormous complexity.Possible solutions consist on acting at source,using medicines more rationally,eco-prescribing or prescribing greener drugs,designing pharmaceuticals that are more readily biodegraded,educating both health professionals and citizens,and improving coordination and collaboration between environmental and healthcare sciences.Besides,end of pipe measures like improving or developing new purification systems(biological,physical,chemical,combination)that eliminate these residues efficiently and at a sustainable cost should be a priority.Here,we describe and discuss the main aspects of drug pollution,highlighting the specific issues of psychiatric drugs.展开更多
The industrial revolution marked the beginning of unprecedented anthropogenic growth and technological advancement that also inadvertently led to acute environmental degradation. This technological advancement was dri...The industrial revolution marked the beginning of unprecedented anthropogenic growth and technological advancement that also inadvertently led to acute environmental degradation. This technological advancement was driven by the use fossil fuels such as crude oil. Crude oil extraction through drilling has resulted in widespread environmental pollution and deterioration of natural habitats. The Ondo State region in Nigeria presents one such expanse where large scale crude extraction operations have caused hazardous environmental pollution and toxic substance contamination. This study is a comprehensive and holistic study of the terrestrial soil ecosystem aimed towards elucidating the potential ecotoxicity that may have adversely affected the area. The results indicated that the terrestrial soil ecosystem was largely acidic (~pH6) and the organic matter content ranged from 6% to 12% indicating the soil was hydric. The results also indicated that the terrestrial soil environment was contaminated with toxic heavy metals including cadmium (Cd), chromium (Cr), lead (Pb) and arsenic (As). The toxic heavy metal concentration of the soil ecosystem was higher during the dry season. The Cr concentration in the soil samples was >3 ppm in most of the sampling sites, which exceeded WHO maximum permissible limit. Mean concentrations of the heavy metals in the soil samples in both seasons were of the order: Cr > Pb > Cd > As. The soil ecosystem was also characterized by a diverse and large population of microorganisms including bacteria like Enterobacter, Escherichia coli, and several species of fungi.展开更多
Healthcare waste has now been increasingly studied in terms of the risks or dangers that can cause the environment and human health. Waste generated in clinical analysis laboratories (CALs) deserves attention, because...Healthcare waste has now been increasingly studied in terms of the risks or dangers that can cause the environment and human health. Waste generated in clinical analysis laboratories (CALs) deserves attention, because, due to the advent of the concept of emergent pollution, it is doubtful if the materials or reagents are disposed in the sewage by CALs, which are currently considered non-contaminated or with low risk potential, under current legislation, may actually impact the environment with actions not yet understood. This study was experimental and conducted at the Environmental Laboratory of the University of the Region of Joinville. It was used Euglena gracilis (primary trophic level) algae exposed to effluents from five sectors of a CAL: Biochemistry, Hematology, Viral Load, Tuberculosis and Immunochemistry. Samples were collected from the siphons attached to the wash sinks of the CAL materials. To verify changes in algae that denote environmental danger, behavioral changes were analyzed via NGTOX, and chlorophyll concentration was calculated by chlorophyll extraction according to Mendel’s method. Viral Load (VL) and Hematology (HT) sectors were the ones that most affected algae (Tukey test). In both sectors, there was inhibition of algae mobility and gravitaxy: in VL, due to the presence of chaotropic agents that denature organic structures;and in HT, due to the change in membrane permeability attributed to methylene blue. Also in HT, there was a search for algae adaptation by increasing the rise to the surface in order to overcome the lower luminosity due to the coloration of the environment, which also affects photosynthesis. Regarding the concentration of a-chlorophyll, the VL and HT were the most affected as well, being the first one the one that had more concentration reduction because of the presence of chaotropic agents. Considering new parameters evaluated, the discarded compounds need to be better evaluated for risk, as they affect algal photosynthesis. Procedures for removal of these compounds should be considered.展开更多
基金Project supported by the French Agency for Environment and Energy (ADEME)Department of Polluted Soils and Sites, Angers, France (No.ADEME 05 72 C0018/INRA 22000033)
文摘A series of 9 soil samples were taken at a timber treatment site in SW France where Cu sulphate and chromated copper arsenate (CCA) have been used as wood preservatives (Sites P1 to P9) and one soil sample was collected at an adjacent site on the same soil type (Site P10). Copper was a major contaminant in all topsoils, varying from 65 (Soil P5) to 2600 mg Cu kg^-1 (Soil P7), exceeding background values for French sandy soils. As and Cr did not accumulate in soil, except at Site P8 (52 mg As kg^-1 and 87 mg Cr kg^-1) where CCA-treated posts were stacked. Soil ecotoxicity was assessed with bioassays using radish, lettuce, slug Arion rufus L., and earthworm Dendrobaena octaedra (Savigny). There were significantly differences in lettuce germination rate, lettuce leaf yield, radish root and leaf yields, slug herbivory, and earthworm avoidance. An additional bioassay showed higher negative impacts on bean shoot and root yields, Rhizobium nodule counts on Bean roots, and guaiacol peroxidase activity in primary Bean leaves for soil from Site PT, with and without fertilisation, than for soil from Site P10, despite both soils having a similar value for computed free ion Cu2+ activity in the soil solution (pCu^2+). Beans grown in soil from Site P7 that had been fertilised showed elevated foliar Cu content and phytotoxic symptoms. Soils from Sites P7 (treatment plant) and P6 (storage of treated utility poles) had the highest ecotoxicity, whereas soil from Site P10 (high organic matter content and cation exchange capacity) had the lowest. Except at Site P10, the soil factor pCu^2+ computed with soil pH and total soil Cu could be used to predict soil ecotoxicity.
基金Under the auspices of the Key Innovation Program of Chinese Academy of Sciences(No.KZCX1-SW-19-4-01)the National Key Basic Research and Development Program of China(No.2004CB41850407)
文摘Ecotoxicity and bioavailability of cadmium (Cd) to the maize (Zea mays L.) and the soybean (Glycine max (L.) Merr.) were investigated by acute toxicity experiment in the laboratory with black soil. Ecotoxicity and bioavailability of Cd were quantified by calculating the median effective concentration (ECs0) and bioaccumulation factor (BAF). The measurement endpoints used were seed germination and seedling growth (shoot and root). The results showed that concentrations of Cd in the soil had adverse effect on the growth of roots and shoots. Seed germination was not the sensitive indicator for the ecotoxicity of Cd in the soil, while the growth of roots was the most sensitive measurement endpoint. Absorbability and transport of Cd in plants depended on the test crop species and Cd concentrations in the soil. The maize retains more Cd in its roots, while the soybean transports more Cd to the shoots from roots.
基金Supported by Higher Education of Changchun Normal University([2018]53)
文摘[Objectives]This study was conducted on the effects of veterinary antibiotics on pasture growth.[Methods]With alfalfa ( Medicago sativa L.) as an experimental material and oxytetracycline,chlortetracycline and enrofloxacin as experimental contaminants,the effects of the three veterinary antibiotics on the germination percentage,germination energy,germination index and vigor index of alfalfa seeds and on the plant height and root length of alfalfa seedlings were study at the concentration gradient of 50,100,150,200 and 250 mg/L,respectively.[Results]The oxytetracycline treatments had no significant effect on the germination percentage of alfalfa seeds,but promoted its germination index.The chlortetracycline treatment solutions and enrofloxacin treatment solutions promoted the germination percentage,germination energy and germination index of alfalfa.The three antibiotics significantly inhibited the vigor index of alfalfa seeds,and had significant inhibitory effects on root length and plant height.[Conclusions]These results provide an important basis for studying the ecotoxicity of veterinary antibiotics on pasture.
文摘Nowadays, microalgae are particularly used to assess the environmental impact of contaminants in aquatic systems. Naturally present in some algal species, bioluminescence is highly used in application fields related to environmental monitoring. Bioluminescent dinoflagellates have played a pivotal role in this domain. When exposed to heavy metals or toxic organic compounds, bioluminescent dinoflagellates have the capacity to decrease light emission. In addition, new molecular tools allow the possibility to produce genetically modified microorganisms which are able to perform luminescence. Combined with the luciferase reporter gene, two main genetic constructions can be employed. Activation of a specific inducible promoter induces the luminescence gene transcription and this signal increases over time. Constitutive promoters result in a high basal expression level of the reporter gene. During exposure to a potential toxic pollutant, the basal expression level will decrease due to the toxic effect. Toxicity bioassays based on engineered luminescent Chlorophyta microalgae are among the most sensitive tests and are an invaluable complement to classical toxicity assays.
文摘A series of N-acetylated cationic gemini surfactants (3a-e) having dimeric structures derived from tertiary amines were synthesized. Their antifungal potency and surface properties were determined. It also studied the acute toxicity of the molecule with the best performance and the best water solubility (3e) through Chlorella vulgaris and Daphnia magna bioassays. The results were compared to those obtained for a commercially available reference compound 2-(thiocyanomethylthio) benzothiazole (TCMTB). Parameters such as surface tension (ϒCMC), critical micelle concentration (CMC), surface excess concentration (Γ), and area per molecule (A) were determined. The resulting values indicated that the five gemini surfactants are characterized by good surface-active and self-aggregation properties. All surfactants were tested to evaluate their antifungal activity. Six fungal strains were used to conduct the study. The minimum inhibitory concentration (MIC) value was measured by the fungal growth inhibition. The results of the MICs were compared with two commercially available reference compounds (Fluconazole and TCMTB). The least active molecule was 3e, but 3b and 3d were found to be the most potent compounds with a similar activity for all strains. Candida albicans was the most sensitive one. In contrast, Aspergillus niger was resistant. Ecotoxicity of gemini 3e was assessed: the commercial formulation (TCMTB) was between three and four orders of magnitude more toxic than the gemini one for the biological species tested.
文摘Xanthates are organic synthesized substances with a potentially wide range of applications. They may serve as essential components of many compounds or materials that also play a vital role in various industrial and socio-economic processes. Addressing the question of the use of xanthates without considering their toxicity, and their decomposition process and products would be ecologically and healthily less sustainable. To date, related information is still dispersed and less known to the public. Therefore, this work provides a comprehensive overview of the existing information on the essentiality, fate, ecotoxicity, and health effects of xanthates and associated compounds. According to available information from scientific, technical, and professional circles, xanthates are diverse, usually with a carbon chain of two to six carbon atoms. They play a crucial role in the sectors of the mining and mineral processing industry, agriculture, wastewater treatment, metal protection, rubber vulcanization, the pharmaceutical industry, and medicine. Xanthates’ degradation under different factors and mechanisms, which determine their fate in the environment, leads to the formation of toxic substances, mainly carbon disulfide, carbonyl sulfide, hydrogen sulfide, and hydrogen peroxide. Xanthates and xanthates degradation products are seriously hazardous to humans, animals, soil and aquatic organisms, enzymatic system, etc. Simultaneous exposure to xanthates and metals results in the magnification or reduction of their toxicity level, depending on the exposed organisms. Such toxicological dimensions should attract more scientific and public attention for more safe production, use, storage, and disposal of xanthates. Due to the high affinity of xanthates for metal, xanthates-modified compounds are efficient metal chelating agents. Such a property should be explored to develop potentially low-cost and effective alternatives for metal removal and recovery from contaminated media. The same applies to developing appropriate methods for the evaluation and management of the simultaneous presence of xanthates and metals in the environment.
文摘The monitoring of water bodies means the attempt of protecting vulnerable groups of organisms inhabiting streams and rivers. Industrial and domestic discharges may worsen the water quality and affect biological balance, structure and the functioning of the ecosystem. Cubat?o City, is one of the largest industrial centers in Brazil and in Latin America, where the constant discharge of effluents into Cubat?o River and its tributaries caused a degradation scenario in the hydrographic basin of the region. The objective of this study was to evaluate the acute and chronic effects of surface water from Cubat?o River and two of its tributaries (Perequê and Pil?es) by ecotoxicological assays. In addition, physical chemical parameters were analyzed. Ceriodaphnia dubia and Vibrio fischeri were exposed-organisms during the studied period. The study was conducted between 2010 and 2011 in four campaigns and nine sites along the basin of Cubat?o River. The ecotoxicity was measured by Vibrio fischeri bioluminescence, EC50 values ranging from 31.25% to 71.61%. In contrast, based on a bioequivalence t-test statistical analysis, the results obtained with Ceriodaphnia dubia revealed no toxicity in the sampling sites. A critical analysis of raw data of luminescence was carried out showing higher values during the 2nd campaign. From the numbers obtained for physical-chemical parameters P5 was far the worst due to chlorides, hardness and conductivity. From the Pearson correlation analysis carried out with toxicity to V. fischeri and the physical chemical parameters, the dissolved oxygen in water resulted in a moderate positive correlation. Sediment contamination was also demonstrated in the region.
基金This work was supported by the National Natural Science Foundation of China(Grant No.U20A20146,Grant No.52200198)the Natural Science Foundation of Shandong Province(Grant No.ZR2021QB186).
文摘The electroplating industry is the main source of 6:2 chlorinated polyfluorinated ether sulfonate(6:2 Cl-PFESA)pollution,which presents risks to human health and the environment.It is therefore crucial to develop effective 6:2 Cl-PFESA degradation techniques.Persulfate oxidation is a potential treatment method for 6:2 Cl-PFESA due to its outstanding oxidative degradability following the generation of the sulfate radical(SO_(4)^(•−))and hydroxyl radical(•OH).It has proven difficult to acquire a full understanding of the reaction mechanism and formation of intermediate(IM)products through conventional experimental studies because they are costly and time-consuming.Therefore,a theoretical analysis method based on density functional theory(DFT)calculations was applied.The DFT results showed that electron transfer for the degradation of 6:2 Cl-PFESA could be initiated by the protonated sulfate radical(HSO_(4)•,ΔG≠SET=9.16 kcal/mol),rather than SO4•−(ΔG≠SET=41.60 kcal/mol).After desulfonation,the reaction underwent stepwise decarboxylation cycles under the action of•OH,leading to the elimination of the CF_(2) units until there was complete mineralization into HCl,HF,and CO_(2).Furthermore,the IMs and the end products of 6:2 Cl-PFESA were evaluated using ECOSAR and TEST software.The low bioaccumulation of the short-chain IMs meant that they could be considered safe in terms of ecotoxicity and health effects.This research determined the theoretical and mechanistic basis of the effects of persulfate in the treatment of water containing 6:2 Cl-PFESA,and its structural analogues.
基金the financial support provided by the Colombia Scientific Program within the framework of the call Ecosistema Cientifico(Contract No.FP44842–218–2018)Co-author Silvana Arias wish to thank Colombian Ministry of Science and Technology for her PhD scholarship(Bicentenary doctoral excellence scholarship program)。
文摘This work assessed the impact of fuelling an automotive engine with palm biodiesel(pure,and two blends of 10%and 20%with diesel,B100,B10 and B20,respectively)operating under representative urban driving conditions on 17 priority polycyclic aromatic hydrocarbon(PAH)compounds,oxidative potential of ascorbic acid(OP^(AA)),and ecotoxicity through D aphnia pulex mortality test.PM diluted with filtered fresh air(WD)gathered in a minitunel,and particulate matter(PM)collected directly from the exhaust gas stream(W/oD)were used for comparison.Results showed that PM collecting method significantly impact PAH concentration.Although all PAH appeared in both,WD and W/oD,higher concentrations were obtained in the last case.Increasing biodiesel concentration in the fuel blend decreased all PAH compounds,and those with 3 and 5 aromatic rings were the most abundant.Palm biodiesel affected both OP^(AA)and ecotoxicity.While B10 and B20 exhibited the same rate of ascorbic acid(AA)depletion,B100 showed significant faster oxidation rate during the first four minutes and oxidized 10%more AA at the end of the test.B100 and B20 were significantly more ecotoxic than B10.The lethal concentration LC50 for B10 was 6.13 mg/L.It was concluded that palm biodiesel decreased PAH compounds,but increased the oxidative potential and ecotoxicity.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China (2017ZX07202)Beijing Science and Technology Planning Project (Z191100006919003)
文摘The occurrence and impacts of emerging organic contaminants(EOCs)in the aquatic environment have gained widespread attention over the past two decades.Due to large number of potential contaminants,monitoring campaigns,treatment plants,and proposed regulations should preferentially focus on specific pollutants with the highest potential for ecological and human health effects.In the present study,a multi-criteria screening approach based on hazard and exposure potentials was developed for prioritization of 405 unregulated EOCs already present in Chinese surface water.Hazard potential,exposure potential,and risk quotients for ecological and human health effects were quantitatively analyzed and used to screen contaminants.The hazard potential was defined by contaminant persistence,bioaccumulation,ecotoxicity,and human health effects;similarly,the exposure potential was a function of contaminant concentration and detection frequency.In total,123 compounds passed the preselection process,which involved a priority index equal to the normalized hazard potential multiplied by the normalized exposure potential.Based on the prioritization scheme,11 compounds were identified as top-priority,and 37 chemicals were defined as high-priority.The results obtained by the priority index were compared with four other prioritization schemes based on exposure potential,hazard potential,or risk quotients for ecological effects or human health.The priority index effectively captured and integrated the results from the more simplistic prioritization schemes.Based on identified data gaps,four uncertainty categories were classified to recommend:①regular monitoring,derivation of environmental quality standards,and development of control strategies;②increased monitoring;③fortified hazard assessment;and④increased efforts to collect occurrence and toxicity data.Overall,20 pollutants were recommended as priority EOCs.The prioritized list of contaminants provides the necessary information for authoritative regulations to monitor,control,evaluate,and manage the risks of environmentally-relevant EOCs in Chinese surface water.
基金supported from Prince of Songkla University under contract number SCI570276Sthe Center of Excellence for Innovation in Chemistry(PERCH-CIC), Office of the Higher Education Commission, Ministry of Education
文摘Ag3PO4 powders were prepared through a precipitation reaction between AgNO3 and precipitating agent solutions that were prepared by adjusting the amount of H3PO4 in the Na3PO4 solutions. The Ag3PO4 powders prepared from the precipitation solution with a pH of 6 showed the highest photocatalytic activity for decolorizing the methylene blue and rhodamine B dyes. These Ag3PO4 powders were further modified by the addition of KBr solutions to obtain AgBr/Ag3PO4 powders and these photocatalysts can decolorize the anionic dyes as reactive orange and methyl orange. The reactive species involved in the photocatalytic degradation process were evaluated for their inhibitory activity using the appropriate scavengers. After photocatalysis, mass spectrometry confirmed that the dyes were degraded to smaller molecules. The ecotoxicities of the dye solutions before and after treatment were evaluated by studying their ability to inhibit the growth of the bioindicator Chlorella vulgaris.
文摘Rare earth elements(REE)are applied as micro-fertilizer in large scale in China and there is growing concern about the environmental effects of REE accumulation in soils. Accumulation of REE was simulated in lab by adding REE to three soils and the survival of Pseudomonas fluorescence X16 strain marked with luxAB gene in soils was detected. Curvilinear regression method was applied to analyze the survival pattern. The stimulation values, EC_(50) and NOEC values for X16 strain were calculated to compare the toxic intensity of REE in different soils. The stimulation(peak)values in red soil, yellow fluovo-aquic soil and yellow cinnamon soil, are 11.55~18.08,(0~2.13), 2.37~4.62 mg·kg^(-1) , respectively. EC_(50) values are 13.47~39.12, 6.59~56.18, 372~1034 (mg·kg^(-1)), respectively.NOEC values are 5.62 ~21.41, 0.00~4.53, 133.3~327.1 mg·kg^(-1), respectively. Tangents values of regression equation of the survival of X16 strain in red soil are the maximum ones indicating that REE accumulation in red soil has stronger inhibitory effects than in other two soils. The soil order, reflecting toxic intensity of REE is as follows: red soil>yellow fluovic-aquic soil>yellow cinnamon soil.
基金supported by a grant from the National Council for Development and Research (CN-Pq/Brazil)
文摘The chemical composition of pectin production wastewater and its toxicity during biological treatment were investigated. Samples of wastewater from different steps of a pectin production wastewater biological treatment plant were investigated including the influent of the treatment (1), after denitrification tank (2), after anaerobic treatment (3) and final effuent (4). The conventional physicochemical characteristics of samples did not indicate wastewater toxicity. However, toxicity assessments carried out on Vibrio fischeri and Scenedesmus subspicatus indicated low EC50 values. The fractionation of the samples using an XAD resin showed that the toxicity was associated with the organic matter. Wastewater apparent molecular mass distributions were 14.3, 25.0, 24.4 and 29.6 kDa for samples 1-4, respectively. Finally, characteristics of the sample by pyrolisis-gas chromatography-mass spectrometry (Py-CG-MS) demonstrated its polyphenolic nature and a 23% increase in the levels of such compounds after the first biological treatment step.
文摘With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induced by nano Fe3O4 on a model organism, Chlorella vulgaris (C. vulgaris) in aquatic environment, were studied. The results showed that Nano-Fe3O4 was toxic to C. vulgaris and affected its content of chlorophyll a, malonaldehyde and glutathione, CO2 absorption, net photosynthetic rate, superoxide dismutase activity and inhibition of hydroxyl radical generation. At higher concentrations, compared with the control group, the toxicity of nano-Fe3O4 was significantly different. It suggested that nano-Fe3O4 is ecotoxic to C. vulgaris in aquatic environment.
基金supported by the National Natural Science Foundation of China(Nos.31971519,31430077,41476128)in part by a grant from the Dedicated Fund for Promoting High-Quality Economic Development in Guangdong Province(Marine Economic Development Project:GDOE(2019)A23)。
文摘Ecotoxic effects of antibiotics or ammonium have been confirmed independently in aquatic animals,but few studies have investigated their combined effects.In aquaculture ecosystems,these pollutants frequently coexist,and often in high concentrations.In this study,the combined effects of antibiotic nitrofurazone and NH4 Cl on the population dynamics and growth rates of two species of ciliated protists,Euplotes vannus and Pseudokeronopsis rubra,were investigated.Profiles of the dose-responses were visualized,and interactions between the two pollutants were quantified by the response surface method(RSM).Results showed that 1)the dynamics of the population growth differed significantly between the testd ciliates and varied with the concentrations of the pollutants;2)the relative growth rate(RGR)of both ciliates decreased significantly with increased pollutant concentrations,while the difference in RGR between the two ciliates was not significant;3)RSM analysis demonstrated an additive effect of nitrofurazone and NH4 Cl on the RGR in both ciliates.In brief,ecotoxic effects can be caused by nitrofurazone and ammonium independently on the two test ciliates,and such effects can be strengthened when they present at the same time.These findings offer a valuable reference for evaluating combined ecotoxic effects caused by multiple pollutants in aquaculture ecosystems.
文摘In periurban zones, urban wet weather discharges have been recognized as the most significant vector of pollution in aquatic environments. The discharge of this water without treatment into the aquatic environment could present an ecotoxicological risk for biocenosis. The aim of the INVASION project is to assess the potential ecotoxicological impact of a combined sewer overflow (CSO) on a peri-urban stream. A comparative study between upstream and downstream areas of the CSO allowed observing significant effects of this overflow on the river. We studied three layers of stream: surface water, benthic layer and hyporheic layer. To characterize the potential ecotoxicological risk of water and sediments, we used a battery of 4 bioassays: Daphnia magna, Vibrio fischeri, Brachionus calyciflorus and Heterocypris incongruens. In parallel, we measured the physico-chemical parameters: ammonium (NH4+), chromium (Cr), copper (Cu) and lead (Pb). An ecological risk is greatest for the hyporheic zone in downstream river, particularly for the solid phase. These results corroborated with the physico-chemical data obtained.
文摘Among all contaminants of emerging interest,drugs are the ones that give rise to the greatest concern.Any of the multiple stages of the drug's life cycle(production,consumption and waste management)is a possible entry point to the different environmental matrices.Psychiatric drugs have received special attention because of two reasons.First,their use is increasing.Second,many of them act on phylogenetically highly conserved neuroendocrine systems,so they have the potential to affect many non-target organisms.Currently,wastewater is considered the most important source of drugs to the environment.Furthermore,the currently available wastewater treatment plants are not specifically prepared to remove drugs,so they reach practically all environmental matrices,even tap water.As drugs are designed to produce pharmacological effects at low concentrations,they are capable of producing ecotoxicological effects on microorganisms,flora and fauna,even on human health.It has also been observed that certain antidepressants and antipsychotics can bioaccumulate along the food chain.Drug pollution is a complicated and diffuse problem characterized by scientific uncertainties,a large number of stakeholders with different values and interests,and enormous complexity.Possible solutions consist on acting at source,using medicines more rationally,eco-prescribing or prescribing greener drugs,designing pharmaceuticals that are more readily biodegraded,educating both health professionals and citizens,and improving coordination and collaboration between environmental and healthcare sciences.Besides,end of pipe measures like improving or developing new purification systems(biological,physical,chemical,combination)that eliminate these residues efficiently and at a sustainable cost should be a priority.Here,we describe and discuss the main aspects of drug pollution,highlighting the specific issues of psychiatric drugs.
文摘The industrial revolution marked the beginning of unprecedented anthropogenic growth and technological advancement that also inadvertently led to acute environmental degradation. This technological advancement was driven by the use fossil fuels such as crude oil. Crude oil extraction through drilling has resulted in widespread environmental pollution and deterioration of natural habitats. The Ondo State region in Nigeria presents one such expanse where large scale crude extraction operations have caused hazardous environmental pollution and toxic substance contamination. This study is a comprehensive and holistic study of the terrestrial soil ecosystem aimed towards elucidating the potential ecotoxicity that may have adversely affected the area. The results indicated that the terrestrial soil ecosystem was largely acidic (~pH6) and the organic matter content ranged from 6% to 12% indicating the soil was hydric. The results also indicated that the terrestrial soil environment was contaminated with toxic heavy metals including cadmium (Cd), chromium (Cr), lead (Pb) and arsenic (As). The toxic heavy metal concentration of the soil ecosystem was higher during the dry season. The Cr concentration in the soil samples was >3 ppm in most of the sampling sites, which exceeded WHO maximum permissible limit. Mean concentrations of the heavy metals in the soil samples in both seasons were of the order: Cr > Pb > Cd > As. The soil ecosystem was also characterized by a diverse and large population of microorganisms including bacteria like Enterobacter, Escherichia coli, and several species of fungi.
文摘Healthcare waste has now been increasingly studied in terms of the risks or dangers that can cause the environment and human health. Waste generated in clinical analysis laboratories (CALs) deserves attention, because, due to the advent of the concept of emergent pollution, it is doubtful if the materials or reagents are disposed in the sewage by CALs, which are currently considered non-contaminated or with low risk potential, under current legislation, may actually impact the environment with actions not yet understood. This study was experimental and conducted at the Environmental Laboratory of the University of the Region of Joinville. It was used Euglena gracilis (primary trophic level) algae exposed to effluents from five sectors of a CAL: Biochemistry, Hematology, Viral Load, Tuberculosis and Immunochemistry. Samples were collected from the siphons attached to the wash sinks of the CAL materials. To verify changes in algae that denote environmental danger, behavioral changes were analyzed via NGTOX, and chlorophyll concentration was calculated by chlorophyll extraction according to Mendel’s method. Viral Load (VL) and Hematology (HT) sectors were the ones that most affected algae (Tukey test). In both sectors, there was inhibition of algae mobility and gravitaxy: in VL, due to the presence of chaotropic agents that denature organic structures;and in HT, due to the change in membrane permeability attributed to methylene blue. Also in HT, there was a search for algae adaptation by increasing the rise to the surface in order to overcome the lower luminosity due to the coloration of the environment, which also affects photosynthesis. Regarding the concentration of a-chlorophyll, the VL and HT were the most affected as well, being the first one the one that had more concentration reduction because of the presence of chaotropic agents. Considering new parameters evaluated, the discarded compounds need to be better evaluated for risk, as they affect algal photosynthesis. Procedures for removal of these compounds should be considered.