This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstru...This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element.展开更多
Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bol...Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations.展开更多
The lack of understanding of plastic hardening(softening)laws,especially under anisotropic stress conditions,results in inappropriate geotechnical management.Most of the yielding envelopes do not consider the effect o...The lack of understanding of plastic hardening(softening)laws,especially under anisotropic stress conditions,results in inappropriate geotechnical management.Most of the yielding envelopes do not consider the effect of intermediate principal stress and the influence of Lode's angle.In addition,the application of plastic flow rules regarding yielding surfaces compromises the softening of rock internal friction as well as the influence of Lode's angle on the plastic potential.Moreover,the ductility to brittleness transition in the intermediate principal stress direction still requires a theoretical foundation.In this study,based on poly-axial testing results of Yunnan sandstone,we adopted a failure criterion with the intermediate principal stress proposed by Menétrey and Willam.The proposed new failure envelope was applied to capture the plastic evolution of rock samples.A plastic hardening-softening model is constructed,based on the framework of the plastic theory.The softening envelope is modified to better present the stress drop and considers the deterioration of rock internal friction in the post-peak stage of poly-axial loading.The differential of plastic potential according to the principal stresses is also modified,considering the rotation of Lode's angle in the poly-axial loading tests.The model results were compared with laboratory testing results,which showed great consistency across 9 different loading tests(5 under triaxial stress and 4 under poly-axial stress with 22 stress-strain curves in total).The induced brittleness by the intermediate principal stress is also well captured by the proposed model.展开更多
According to post-seismic observations,spectacular examples of engineering failures can be ascribed to the occurrence of sand liquefaction,where a sandy soil stratum could undergo a transient loss of shear strength an...According to post-seismic observations,spectacular examples of engineering failures can be ascribed to the occurrence of sand liquefaction,where a sandy soil stratum could undergo a transient loss of shear strength and even behave as a“liquid”.Therefore,correct simulation of liquefaction response has become a challenging issue in geotechnical engineering field.In advanced elastoplastic models of sand liquefaction,certain fitting parameters have a remarkable effect on the computed results.However,the identification of these parameters,based on the experimental data,is usually intractable and sometimes follows a subjective trial-and-error procedure.For this,this paper presented a novel calibration methodology based on an optimization algorithm(particle swarm optimization(PSO))for an advanced elastoplastic constitutive model.A multi-objective function was designed to adjust the global quality for both monotonic and cyclic triaxial simulations.To overcome computational problem probably appearing in simulation of the cyclic triaxial test,two interrupt mechanisms were designed to prevent the particles from wasting time in searching the unreasonable space of candidate solutions.The Dafalias model has been used as an example to demonstrate the main programme.With the calibrated parameters for the HN31 sand,the computed results were highly consistent with the laboratory experiments(including monotonic triaxial tests under different confining pressures and cyclic triaxial tests in two loading modes).Finally,an extension example is given for Ottawa sand F65,suggesting that the proposed platform is versatile and can be easily customized to meet different practical needs.展开更多
The recoverable strain of rock is completely classified as elastic strain in the conventional elastic-plastic theory,which often results in poor agreement between theoretical and experimental curves.This work proposes...The recoverable strain of rock is completely classified as elastic strain in the conventional elastic-plastic theory,which often results in poor agreement between theoretical and experimental curves.This work proposes an improved elastoplastic model of rock materials considering the evolutions of crack deformation and elastic modulus to better characterize the nonlinear mechanical behavior of rock in the post-peak stage.In this model,the recoverable strain is assumed to be a combination of elastic and crack strain,and the constitutive relationship between crack strain and rock stress is deduced.Based on the proposed assumption,the evolutions of the mechanical parameters including strength parameters,elastic,plastic,and crack deformation parameters versus the plastic strain and confining stress were investigated.The developed elastoplastic model was validated by comparing the theoretical values with the results of the triaxial cyclic loading and unloading test.The theoretical calculation results show a good agreement with the laboratory test,which indicates that the improved elastoplastic model can effectively reflect the nonlinear mechanical behavior of the rock materials.The research results are expected to provide a valuable reference for further understanding the evolution of rock crack deformation.展开更多
Due to differences in the properties of composition materials and construction techniques,unreinforced masonry is characterized by low strength,anisotropy,nonuniformity,and low ductility.In order to accurately simulat...Due to differences in the properties of composition materials and construction techniques,unreinforced masonry is characterized by low strength,anisotropy,nonuniformity,and low ductility.In order to accurately simulate the mechanical behavior of unreinforced brick masonry walls under static and dynamic loads,a new elastoplastic damage constitutive model was proposed and the corresponding subroutine was developed based on the concrete material constitutive model.In the proposed constitutive model,the Rankine strength theory and the Drucker-Prager strength theory were used to define the tensile and compressive yield surface function of materials,respectively.Moreover,the stress updating algorithm was modified to consider the tensile plastic permanent deformation of masonry materials.To verify the accuracy of the proposed constitutive model,numerical simulations of the brick masonry under monotonic and cyclic uniaxial tension and compression loads were carried out.Comparisons among the numerical and theoretical and experimental results show that the proposed model can properly reflect the masonry material mechanical properties.Furthermore,the numerical models of four pieces of masonry walls with different mortar strengths were established.Low cyclic loadings were applied and the results show that the proposed constitutive model can properly simulate the wall shear failure characteristics,and the force-displacement hysteretic curves obtained by numerical simulation are in good agreement with the tests.Overall,the proposed elastic-plastic damage constitutive model can simulate the nonlinear behavior of unreinforced brick masonry walls very well,and can be used to predict the structural response of masonry walls.展开更多
An isotropic hardening elastoplastic model for soil is presented, which takes into consideration the influence of structure and overconsolidation on strength and deformation of clays. Based on the superloading concept...An isotropic hardening elastoplastic model for soil is presented, which takes into consideration the influence of structure and overconsolidation on strength and deformation of clays. Based on the superloading concept and subloading concept, the inner structural variable ω and overconsolidation variable ρ are introduced to describe the structure and overconsolidation of soil. The present model requires three additional parameters which can be obtained by conventional triaxial test, and the other parameters are same as those of modified Cam-clay(MCC) model. The performance of the proposed model is verified by undrained and drained triaxial tests.展开更多
We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcrack...We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology.展开更多
Springback is considered to be one of the most important problems in aluminum sheet stamp forming, leading to deviation from the designed target shape and assembly defects. In this study, a springback simulation model...Springback is considered to be one of the most important problems in aluminum sheet stamp forming, leading to deviation from the designed target shape and assembly defects. In this study, a springback simulation model based on the benchmark of a Jaguar Land Rover aluminum panel is established. We embed several elastoplastic constitutive models ( Barlat' s 89, Barlat' s YLD2000, Yoshida-Uemori (YU) + Barlat' s 89, and YU + Barlat' s YLD2000) in the finite element model,in order to discuss the influence of the constitutive model selection on springback prediction in aluminum sheet forming.展开更多
The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increa...The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increase in time of loading, the damage accumulation becomes larger. Under the centre and toe of embankment, damage becomes serious. Under the centre of embankment, vertical damage values are bigger than horizontal ones. Under the toe of embankment, horizontal damage values are bigger than vertical ones.展开更多
Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic mo...Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic model that can describe the cyclic stress-strain response characteristic for soft clay,is embedded into the coupled Eulerian-Lagrangian(CEL)algorithm of ABAQUS by means of subroutine interface technology.On the basis of CEL technique and undrained cyclic elastoplastic model,a method for analyzing the dynamic instability process of marine slopes under the action of earthquake load is developed.The rationality for cyclic elastoplastic constitutive model is validated by comparing its calculated results with those of von Mises model built in Abaqus.The dynamic instability process of slopes under different conditions are analyzed.The results indicate that the deformation accumulation of soft clay have a significant effect on the dynamic instability process of submarine slopes under earthquake loading.The cumulative deformation is taken into our model and this makes the calculated final deformation of the slope under earthquake load larger than the results of conventional numerical method.When different contact conditions are used for analysis,the smaller the friction coefficient is,the larger the deformation of slopes will be.A numerical analysis method that can both reflect the dynamic properties of soft clay and display the dynamic instability process of submarine landslide is proposed,which could visually predict the topographies of the previous and post failure for submarine slope.展开更多
Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which i...Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non- associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening be- havior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD mate- rial structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper.展开更多
Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible t...Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications.展开更多
How to determine reasonable position and length of anchor cable is a frequently encountered but not well addressed problem in slope reinforcement projects. In this paper, the variable-modulus elastoplastic strength re...How to determine reasonable position and length of anchor cable is a frequently encountered but not well addressed problem in slope reinforcement projects. In this paper, the variable-modulus elastoplastic strength reduction method (SRM) is used to obtain the stress field, displacement field, and factor of safety of slope. Slope reinforcement using anchor cables is modeled by surface loading, i.e. different distributions of surface loading represent various reinforcement schemes. Optimal reinforcement scheme of anchor cables can be determined based on slope stress and displacement fields. By comparing the factor of safety and stress field before and after slope reinforcement, it is found that better rein-forcement results can be achieved if strong reinforcement is applied upon the regions with high stress and large displacement. This method can well optimize the arrangement of anchor cables. In addition, several cases are employed to verify the proposed method.展开更多
Tunnel portal sections often suffer serious damage in strong earthquake events.Earthquake waves may propagate in different directions,producing various dynamic responses in the tunnel portal.Based on the Galongla tunn...Tunnel portal sections often suffer serious damage in strong earthquake events.Earthquake waves may propagate in different directions,producing various dynamic responses in the tunnel portal.Based on the Galongla tunnel,which is located in a seismic region of China,three-dimensional seismic analysis is conducted to investigate the dynamic response of a tunnel portal subjected to earthquake waves with different vibration directions.In order to simulate the mechanic behavior of slope rock effectively,an elastoplastic damage model is adopted and applied to ABAQUS software by a self-compiled user material(UMAT)subroutine.Moreover,the seismic wave input method for tunnel portal is established to realize the seismic input under vertically incident earthquake waves with different vibration directions,e.g.,S waves with a vibration direction perpendicular or parallel to the tunnel axis and P waves with a vibration direction perpendicular to the tunnel axis.The numerical results indicate that the seismic response and damage mechanisms of the tunnel portal section are related to the vibration direction of the earthquake waves.For vertically incident S waves running perpendicular to the tunnel axis,the hoop tensile strain at the spandrel and arch foot and the hoop shear strain at the vault and arch bottom are the main contributors to the plastic damage of the tunnel.The strain is initially concentrated around the tunnel foot and spandrel,before shifting to the tunnel vault and bottom farther away from the tunnel entrance.For vertically incident S waves running parallel to the tunnel axis,very large hoop shear strain and plastic damage appear at the tunnel haunches.This strain first increases and then decreases with distance from the tunnel entrance.For vertically incident P waves running perpendicular to the tunnel axis,the maximum damage factor of the slope rock and the maximum plastic strain of the tunnel are significantly lower than for S waves.Moreover,with increasing distance from the tunnel entrance,the plastic damage to the tunnel lining rapidly decreases.展开更多
The objective of this study is two-fold. Firstly, new finite strain elastoplasticity models are proposed from a fresh standpoint to achieve a comprehensive representation of thermomechanical behavior of metals and all...The objective of this study is two-fold. Firstly, new finite strain elastoplasticity models are proposed from a fresh standpoint to achieve a comprehensive representation of thermomechanical behavior of metals and alloys over the whole deformation range up to failure. As contrasted with the usual elastoplasticity models, such new models of much simpler structure are totally free, in the sense that both the yield condition and the loading–unloading conditions need not be introduced as extrinsic coercive conditions but are automatically incorporated as inherent constitutive features into the models. Furthermore, the new models are shown to be thermodynamically consistent, in a further sense that both the specific entropy function and the Helmholtz free energy function may be presented in explicit forms, such that the thermodynamic restriction stipulated by Clausius–Duhem inequality for the intrinsic dissipation may be identically satisfied. Secondly, it is then demonstrated that the thermo-coupled fatigue failure behavior under combined cyclic changes of stress and temperature may be derived as direct consequences from the new models. This novel result implies that the new model can directly characterize the thermo-coupled fatigue failure behavior of metals and alloys, without involving any usual damage-like variables as well as any ad hoc additional criteria for failure. In particular, numerical examples show that, under cyclic changes of temperature, the fatigue characteristic curve of fatigue life versus temperature amplitude may be obtained for the first time from model prediction both in the absence and in the presence of stress. Results are in agreement with the salient features of metal fatigue failure.展开更多
基金the National Natural Science Foundation of China through Contract/Grant Numbers 12002245,12172263 and 11772237Chongqing Jiaotong University through Contract/Grant Number F1220038.
文摘This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element.
基金funded by the National Key Research and Development Plan(No.2022YFC3203200)Department of Science and Technology of Guangdong Province(No.2021ZT09G087)the National Natural Science Foundation Project of China(No.42167025).
文摘Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations.
基金the research grant supported by the State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University,China)(No.WS2020A01)。
文摘The lack of understanding of plastic hardening(softening)laws,especially under anisotropic stress conditions,results in inappropriate geotechnical management.Most of the yielding envelopes do not consider the effect of intermediate principal stress and the influence of Lode's angle.In addition,the application of plastic flow rules regarding yielding surfaces compromises the softening of rock internal friction as well as the influence of Lode's angle on the plastic potential.Moreover,the ductility to brittleness transition in the intermediate principal stress direction still requires a theoretical foundation.In this study,based on poly-axial testing results of Yunnan sandstone,we adopted a failure criterion with the intermediate principal stress proposed by Menétrey and Willam.The proposed new failure envelope was applied to capture the plastic evolution of rock samples.A plastic hardening-softening model is constructed,based on the framework of the plastic theory.The softening envelope is modified to better present the stress drop and considers the deterioration of rock internal friction in the post-peak stage of poly-axial loading.The differential of plastic potential according to the principal stresses is also modified,considering the rotation of Lode's angle in the poly-axial loading tests.The model results were compared with laboratory testing results,which showed great consistency across 9 different loading tests(5 under triaxial stress and 4 under poly-axial stress with 22 stress-strain curves in total).The induced brittleness by the intermediate principal stress is also well captured by the proposed model.
基金support provided by the research sponsors through Shanghai Pujiang Program(Grant No.20PJ1417300)ANR(Agence Nationale de la Recherche)ISOLATE is gratefully acknowledged.
文摘According to post-seismic observations,spectacular examples of engineering failures can be ascribed to the occurrence of sand liquefaction,where a sandy soil stratum could undergo a transient loss of shear strength and even behave as a“liquid”.Therefore,correct simulation of liquefaction response has become a challenging issue in geotechnical engineering field.In advanced elastoplastic models of sand liquefaction,certain fitting parameters have a remarkable effect on the computed results.However,the identification of these parameters,based on the experimental data,is usually intractable and sometimes follows a subjective trial-and-error procedure.For this,this paper presented a novel calibration methodology based on an optimization algorithm(particle swarm optimization(PSO))for an advanced elastoplastic constitutive model.A multi-objective function was designed to adjust the global quality for both monotonic and cyclic triaxial simulations.To overcome computational problem probably appearing in simulation of the cyclic triaxial test,two interrupt mechanisms were designed to prevent the particles from wasting time in searching the unreasonable space of candidate solutions.The Dafalias model has been used as an example to demonstrate the main programme.With the calibrated parameters for the HN31 sand,the computed results were highly consistent with the laboratory experiments(including monotonic triaxial tests under different confining pressures and cyclic triaxial tests in two loading modes).Finally,an extension example is given for Ottawa sand F65,suggesting that the proposed platform is versatile and can be easily customized to meet different practical needs.
基金supported by the National Natural Science Foundation of China(Grant No.52074269)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,and the Graduate Innovation Program of China University of Mining and Technology(Grant No.2024WLKXJ202).
文摘The recoverable strain of rock is completely classified as elastic strain in the conventional elastic-plastic theory,which often results in poor agreement between theoretical and experimental curves.This work proposes an improved elastoplastic model of rock materials considering the evolutions of crack deformation and elastic modulus to better characterize the nonlinear mechanical behavior of rock in the post-peak stage.In this model,the recoverable strain is assumed to be a combination of elastic and crack strain,and the constitutive relationship between crack strain and rock stress is deduced.Based on the proposed assumption,the evolutions of the mechanical parameters including strength parameters,elastic,plastic,and crack deformation parameters versus the plastic strain and confining stress were investigated.The developed elastoplastic model was validated by comparing the theoretical values with the results of the triaxial cyclic loading and unloading test.The theoretical calculation results show a good agreement with the laboratory test,which indicates that the improved elastoplastic model can effectively reflect the nonlinear mechanical behavior of the rock materials.The research results are expected to provide a valuable reference for further understanding the evolution of rock crack deformation.
基金National Key Research and Development Program of China under Grant Nos.2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No.52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2019EEEVL0402。
文摘Due to differences in the properties of composition materials and construction techniques,unreinforced masonry is characterized by low strength,anisotropy,nonuniformity,and low ductility.In order to accurately simulate the mechanical behavior of unreinforced brick masonry walls under static and dynamic loads,a new elastoplastic damage constitutive model was proposed and the corresponding subroutine was developed based on the concrete material constitutive model.In the proposed constitutive model,the Rankine strength theory and the Drucker-Prager strength theory were used to define the tensile and compressive yield surface function of materials,respectively.Moreover,the stress updating algorithm was modified to consider the tensile plastic permanent deformation of masonry materials.To verify the accuracy of the proposed constitutive model,numerical simulations of the brick masonry under monotonic and cyclic uniaxial tension and compression loads were carried out.Comparisons among the numerical and theoretical and experimental results show that the proposed model can properly reflect the masonry material mechanical properties.Furthermore,the numerical models of four pieces of masonry walls with different mortar strengths were established.Low cyclic loadings were applied and the results show that the proposed constitutive model can properly simulate the wall shear failure characteristics,and the force-displacement hysteretic curves obtained by numerical simulation are in good agreement with the tests.Overall,the proposed elastic-plastic damage constitutive model can simulate the nonlinear behavior of unreinforced brick masonry walls very well,and can be used to predict the structural response of masonry walls.
基金the National Natural Science Foundation of China(No.41602282)
文摘An isotropic hardening elastoplastic model for soil is presented, which takes into consideration the influence of structure and overconsolidation on strength and deformation of clays. Based on the superloading concept and subloading concept, the inner structural variable ω and overconsolidation variable ρ are introduced to describe the structure and overconsolidation of soil. The present model requires three additional parameters which can be obtained by conventional triaxial test, and the other parameters are same as those of modified Cam-clay(MCC) model. The performance of the proposed model is verified by undrained and drained triaxial tests.
基金Project supported by the National Major Science & Technology Project of China (Grant No. 2016ZX05020-003).
文摘We present an in-depth study of the failure phenomenon of solid expandable tubular (SET) due to large expansion ratio in open holes of deep and ultra-deep wells. By examining the post-expansion SET, lots of microcracks are found on the inner surface of SET. Their morphology and parameters such as length and depth are investigated by use of metallographic microscope and scanning electron microscope (SEM). In addition, the Voronoi cell technique is adopted to characterize the multi-phase material microstructure of the SET. By using the anisotropic elastoplastic material constitutive model and macro/microscopic multi-dimensional cross-scale coupled boundary conditions, a sophisticated and multi-scale finite element model (FEM) of the SET is built successfully to simulate the material microstructure damage for different expansion ratios. The microcrack initiation and growth is simulated, and the structural integrity of the SET is discussed. It is concluded that this multi-scale finite element modeling method could effectively predict the elastoplastic deformation and the microscopic damage initiation and evolution of the SET. It is of great significance as a theoretical analysis tool to optimize the selection of appropriate tubular materials and it could be also used to substantially reduce costly failures of expandable tubulars in the field. This numerical analysis is not only beneficial for understanding the damage process of tubular materials but also effectively guides the engineering application of the SET technology.
文摘Springback is considered to be one of the most important problems in aluminum sheet stamp forming, leading to deviation from the designed target shape and assembly defects. In this study, a springback simulation model based on the benchmark of a Jaguar Land Rover aluminum panel is established. We embed several elastoplastic constitutive models ( Barlat' s 89, Barlat' s YLD2000, Yoshida-Uemori (YU) + Barlat' s 89, and YU + Barlat' s YLD2000) in the finite element model,in order to discuss the influence of the constitutive model selection on springback prediction in aluminum sheet forming.
文摘The deformation, of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Blot' s consolidation theory. With the increase in time of loading, the damage accumulation becomes larger. Under the centre and toe of embankment, damage becomes serious. Under the centre of embankment, vertical damage values are bigger than horizontal ones. Under the toe of embankment, horizontal damage values are bigger than vertical ones.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.51179174).
文摘Marine geological disasters occurred frequently in the deep-water slope area of the northern South China Sea,especially submarine landslides,which caused serious damage to marine facilities.The cyclic elastoplastic model that can describe the cyclic stress-strain response characteristic for soft clay,is embedded into the coupled Eulerian-Lagrangian(CEL)algorithm of ABAQUS by means of subroutine interface technology.On the basis of CEL technique and undrained cyclic elastoplastic model,a method for analyzing the dynamic instability process of marine slopes under the action of earthquake load is developed.The rationality for cyclic elastoplastic constitutive model is validated by comparing its calculated results with those of von Mises model built in Abaqus.The dynamic instability process of slopes under different conditions are analyzed.The results indicate that the deformation accumulation of soft clay have a significant effect on the dynamic instability process of submarine slopes under earthquake loading.The cumulative deformation is taken into our model and this makes the calculated final deformation of the slope under earthquake load larger than the results of conventional numerical method.When different contact conditions are used for analysis,the smaller the friction coefficient is,the larger the deformation of slopes will be.A numerical analysis method that can both reflect the dynamic properties of soft clay and display the dynamic instability process of submarine landslide is proposed,which could visually predict the topographies of the previous and post failure for submarine slope.
基金Project supported by the National Natural Science Foundation of China (No. 41172276)the Central Financial Funds for the Development of Characteristic Key Disciplines in Local Universities(Nos. 106-00X101 and 106-5X1205)
文摘Two elastoplastic constitutive models based on the unified strength the- ory (UST) are established and implemented in an explicit finite difference code, fast Lagrangian analysis of continua (FLAC/FLAC3D), which includes an associated/non- associated flow rule, strain-hardening/softening, and solutions of singularities. Those two constitutive models are appropriate for metallic and strength-different (SD) materials, respectively. Two verification examples are used to compare the computation results and test data using the two-dimensional finite difference code FLAC and the finite element code ANSYS, and the two constitutive models proposed in this paper are verified. Two application examples, the large deformation of a prismatic bar and the strain-softening be- havior of soft rock under a complex stress state, are analyzed using the three-dimensional code FLAC3D. The two new elastoplastic constitutive models proposed in this paper can be used in bearing capacity evaluation or stability analysis of structures built of metallic or SD materials. The effect of the intermediate principal stress on metallic or SD mate- rial structures under complex stress states, including large deformation, three-dimensional and non-association problems, can be analyzed easily using the two constitutive models proposed in this paper.
基金the Chinese Scholarship Council,which funded her Joint Ph D research programthe support from Natural Sciences and Engineering Research Council of Canada(NSERC)for his research programsthe Chinese Ministry of Science and Technology for supporting his research program(grant No.2014CB744701)
文摘Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications.
基金funded by the National Natural Science Foundation of China (Grant Nos. 51378131 and 51378403)
文摘How to determine reasonable position and length of anchor cable is a frequently encountered but not well addressed problem in slope reinforcement projects. In this paper, the variable-modulus elastoplastic strength reduction method (SRM) is used to obtain the stress field, displacement field, and factor of safety of slope. Slope reinforcement using anchor cables is modeled by surface loading, i.e. different distributions of surface loading represent various reinforcement schemes. Optimal reinforcement scheme of anchor cables can be determined based on slope stress and displacement fields. By comparing the factor of safety and stress field before and after slope reinforcement, it is found that better rein-forcement results can be achieved if strong reinforcement is applied upon the regions with high stress and large displacement. This method can well optimize the arrangement of anchor cables. In addition, several cases are employed to verify the proposed method.
基金support from the Beijing Natural Science Foundation Program(JQ19029)the National Natural Science Foundation of China(41672289+1 种基金U183920151421005).
文摘Tunnel portal sections often suffer serious damage in strong earthquake events.Earthquake waves may propagate in different directions,producing various dynamic responses in the tunnel portal.Based on the Galongla tunnel,which is located in a seismic region of China,three-dimensional seismic analysis is conducted to investigate the dynamic response of a tunnel portal subjected to earthquake waves with different vibration directions.In order to simulate the mechanic behavior of slope rock effectively,an elastoplastic damage model is adopted and applied to ABAQUS software by a self-compiled user material(UMAT)subroutine.Moreover,the seismic wave input method for tunnel portal is established to realize the seismic input under vertically incident earthquake waves with different vibration directions,e.g.,S waves with a vibration direction perpendicular or parallel to the tunnel axis and P waves with a vibration direction perpendicular to the tunnel axis.The numerical results indicate that the seismic response and damage mechanisms of the tunnel portal section are related to the vibration direction of the earthquake waves.For vertically incident S waves running perpendicular to the tunnel axis,the hoop tensile strain at the spandrel and arch foot and the hoop shear strain at the vault and arch bottom are the main contributors to the plastic damage of the tunnel.The strain is initially concentrated around the tunnel foot and spandrel,before shifting to the tunnel vault and bottom farther away from the tunnel entrance.For vertically incident S waves running parallel to the tunnel axis,very large hoop shear strain and plastic damage appear at the tunnel haunches.This strain first increases and then decreases with distance from the tunnel entrance.For vertically incident P waves running perpendicular to the tunnel axis,the maximum damage factor of the slope rock and the maximum plastic strain of the tunnel are significantly lower than for S waves.Moreover,with increasing distance from the tunnel entrance,the plastic damage to the tunnel lining rapidly decreases.
基金the joint support of the funds from Natural Science Foundation of China(No.:11372172No.:11542020)+2 种基金the Science and Tech-nology Development Project launched by Weifang city(No.:2015GX018)the 211-project launched by the Ed-ucation Committee of China through Shanghai Univer-sity(No.:S.15-0303-15–208)the fund for inno-vative research from Shanghai University(No.:L.10-0401-1 http://dx.doi.org/10.13039/501100001809 3-001)
文摘The objective of this study is two-fold. Firstly, new finite strain elastoplasticity models are proposed from a fresh standpoint to achieve a comprehensive representation of thermomechanical behavior of metals and alloys over the whole deformation range up to failure. As contrasted with the usual elastoplasticity models, such new models of much simpler structure are totally free, in the sense that both the yield condition and the loading–unloading conditions need not be introduced as extrinsic coercive conditions but are automatically incorporated as inherent constitutive features into the models. Furthermore, the new models are shown to be thermodynamically consistent, in a further sense that both the specific entropy function and the Helmholtz free energy function may be presented in explicit forms, such that the thermodynamic restriction stipulated by Clausius–Duhem inequality for the intrinsic dissipation may be identically satisfied. Secondly, it is then demonstrated that the thermo-coupled fatigue failure behavior under combined cyclic changes of stress and temperature may be derived as direct consequences from the new models. This novel result implies that the new model can directly characterize the thermo-coupled fatigue failure behavior of metals and alloys, without involving any usual damage-like variables as well as any ad hoc additional criteria for failure. In particular, numerical examples show that, under cyclic changes of temperature, the fatigue characteristic curve of fatigue life versus temperature amplitude may be obtained for the first time from model prediction both in the absence and in the presence of stress. Results are in agreement with the salient features of metal fatigue failure.