期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
A comprehensive overview of the electrochemical mechanisms in emerging alkali metal-carbon dioxide batteries 被引量:1
1
作者 Jiangfeng Lin Wanqing Song +5 位作者 Caixia Xiao Jingnan Ding Zechuan Huang Cheng Zhong Jia Ding Wenbin Hu 《Carbon Energy》 SCIE CSCD 2023年第5期78-114,共37页
Alkali metal-carbon dioxide(Li/Na/K-CO_(2))batteries are emerging electrochemical energy storage technologies in the context of the energy crisis and the urgent demand for carbon neutrality.Alkali metal-CO_(2) batteri... Alkali metal-carbon dioxide(Li/Na/K-CO_(2))batteries are emerging electrochemical energy storage technologies in the context of the energy crisis and the urgent demand for carbon neutrality.Alkali metal-CO_(2) batteries offer a new strategy for CO_(2) fixation and utilization,and thus has been receiving considerable attention in recent years.Considerable progress has been achieved since alkali metal-CO_(2) batteries were invented,especially in terms of development of new electrode materials,and yet,research is lacking on the underlying mechanisms of the systems.This is the first typical review focusing on the electrochemical mechanisms of metal-CO_(2) batteries that summarizes the current understanding of and provides insights into the thermodynamic reaction pathways,the kinetic characteristics,and the crucial factors determining the reaction mechanisms in alkali metal-CO_(2) batteries.The review starts with the fundamental concepts of alkali metal-CO_(2) batteries,followed by a comprehensive discussion of the working mechanisms on cathodes and anodes.Moreover,the operation mechanisms of state-of-the-art electrolytes,including liquid and(quasi-)solid-state electrolytes,are also described.Finally,we identify the unsolved problems in current alkali metal-CO_(2) batteries and propose potential topics for future research. 展开更多
关键词 alkali metal anodes CO_(2)reduction reaction electrochemical mechanism Li-CO_(2)battery Na-CO_(2)battery
下载PDF
Electrolyte composition and removal mechanism of Cu electrochemical mechanical polishing 被引量:1
2
作者 边燕飞 翟文杰 +2 位作者 程媛媛 朱宝全 王金虎 《Journal of Central South University》 SCIE EI CAS 2014年第6期2191-2201,共11页
The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric a... The optimization of electrolytes and the material removal mechanisms for Cu electrochemical mechanical planarization(ECMP)at different pH values including 5-methyl-1H-benzotriazole(TTA),hydroxyethylidenediphosphoric acid(HEDP),and tribasic ammonium citrate(TAC)were investigated by electrochemical techniques,X-ray photoelectron spectrometer(XPS)analysis,nano-scratch tests,AFM measurements,and polishing of Cu-coated blanket wafers.The experimental results show that the planarization efficiency and the surface quality after ECMP obtained in alkali-based solutions are superior to that in acidic-based solutions,especially at pH=8.The optimal electrolyte compositions(mass fraction)are 6% HEDP,0.3% TTA and 3% TAC at pH=8.The main factor affecting the thickness of the oxide layer formed during ECMP process is the applied potential.The soft layer formation is a major mechanism for electrochemical enhanced mechanical abrasion.The surface topography evolution before and after electrochemical polishing(ECP)illustrates the mechanism of mechanical abrasion accelerating electrochemical dissolution,that is,the residual stress caused by the mechanical wear enhances the electrochemical dissolution rate.This understanding is beneficial for optimization of ECMP processes. 展开更多
关键词 electrochemical mechanical polishing electrolyte composition removal mechanism 5-methyl-lH-benzotriazole hydroxyethylidenediphosphoric acid tribasic ammonium citrate
下载PDF
Electrochemical corrosion failure mechanism of M152 steel under a salt-spray environment
3
作者 Pan Yi Kui Xiao +5 位作者 Kang-kang Ding Xu Wang Li-dan Yan Cheng-liang Mao Chao-fang Dong Xiao-gang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1183-1189,共7页
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, a... The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies. 展开更多
关键词 heat-resistant steel electrochemical corrosion failure mechanism salt spray test
下载PDF
A dual redox-active and robust polymer enables ultrafast and durable proton-storage capability
4
作者 Jiachen Yang Jing Jin +4 位作者 Peipei Zhang Xinyue Zhang Jun Yang Junwei Lang Minjie Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期237-243,共7页
Aqueous proton batteries(APBs) offer a viable and attractive option in the field of affordable and sustainable energy solutions.Organic polymers are highly favored due to their environmentally friendly manufacturabili... Aqueous proton batteries(APBs) offer a viable and attractive option in the field of affordable and sustainable energy solutions.Organic polymers are highly favored due to their environmentally friendly manufacturability and malleable molecular configurations,making them suitable materials for constructing APB electrodes.Nonetheless,their currently limited capacity for proton-associated redox reactions poses a challenge to the widespread usage.Herein,we have developed a highly redox-active organic polymer(PTA) tailored for APB applications.The inclusion of dual redox-active moieties in the extended nconjugated frameworks not only enhances the redox activity and refines the electronic properties,but also ensures the high structural integrity of the PTA polymer.When used as an electrode,the PTA polymer has a notable ability to store protons,with a large capacity of 213.99 mA h g^(-1) at 1 A g^(-1) and exceptional long-term stability,as evidenced by retaining 94.6% of its initial capacity after 20,000 cycles.In situ techniques alongside theoretical calculations have unveiled efficient redox processes occurring at C=N and C=O redox-active sites within the PTA electrode upon proton uptake/removal.Furthermore,a softpackage APB device has been assembled with impressive electrochemical behaviors and excellent operational lifespan,accentuating its significant promise for real-world deployment. 展开更多
关键词 Aqueous battery Electrode material Organic polymer electrochemical mechanism Proton storage
下载PDF
Engineering electrolyte additives for stable zinc-based aqueous batteries:Insights and prospects
5
作者 Tao Liu Xusheng Dong +7 位作者 Bin Tang Ruizheng Zhao Jie Xu Hongpeng Li Shasha Gao Yongzheng Fang Dongliang Chao Zhen Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期311-326,共16页
Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic re... Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic reactions of metallic Zn anodes. Therefore, achieving high-energy–density ZABs necessitates addressing the fundamental thermodynamics and kinetics of Zn anodes. Various strategies are available to mitigate these challenges, with electrolyte additive engineering emerging as one of the most efficient and promising approaches. Despite considerable research in this field, a comprehensive understanding of the intrinsic mechanisms behind the high performance of electrolyte additives remains limited. This review aims to provide a detailed introduction to functional electrolyte additives and thoroughly explore their underlying mechanisms. Additionally, it discusses potential directions and perspectives in additive engineering for ZABs, offering insights into future development and guidelines for achieving high-performance ZABs. 展开更多
关键词 Aqueous batteries Zn anodes Electrolyte additive engineering Interfacial chemistry electrochemical mechanisms
下载PDF
Review and prospects on the low-voltage Na_(2)Ti_(3)O_(7) anode materials for sodium-ion batteries
6
作者 Jun Dong Yalong Jiang +3 位作者 Ruxing Wang Qiulong Wei Qinyou An Xiaoxing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期446-460,I0011,共16页
Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in... Due to its low cost and natural abundance of sodium,Na-ion batteries(NIBs)are promising candidates for large-scale energy storage systems.The development of ultralow voltage anode materials is of great significance in improving the energy density of NIBs.Low-voltage anode materials,however,are severely lacking in NIBs.Of all the reported insertion oxides anodes,the Na_(2)Ti_(3)O_(7) has the lowest operating voltage(an average potential of 0.3 V vs.Na^(+)/Na)and is less likely to deposit sodium,which has excellent potential for achieving NIBs with high energy densities and high safety.Although significant progress has been made,achieving Na_(2)Ti_(3)O_(7) electrodes with excellent performance remains a severe challenge.This paper systematically summarizes and discusses the physicochemical properties and synthesis methods of Na_(2)Ti_(3)O_(7).Then,the sodium storage mechanisms,key issues and challenges,and the optimization strategies for the electrochemical performance of Na_(2)Ti_(3)O_(7) are classified and further elaborated.Finally,remaining challenges and future research directions on the Na_(2)Ti_(3)O_(7) anode are highlighted.This review offers insights into the design of high-energy and high-safety NIBs. 展开更多
关键词 Sodium-ion batteries Low-voltage anode materials Na_(2)Ti_(3)O_(7) electrochemical performances electrochemical mechanism
下载PDF
Process and anodic reaction mechanism of cadmium electrically enhanced cementation on zinc plate under an ultrasonic field in ammoniacal system 被引量:3
7
作者 Tian-xiang NAN Jian-guang YANG +2 位作者 Wen-chao WANG Ling-chen LI Jian-ying YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1967-1974,共8页
Cadmium was replaced by zinc in ammoniacal system using an electrically enhanced method under ultrasonic waves.Five main influencing factors were investigated by a single-factor experiment to determine the optimum par... Cadmium was replaced by zinc in ammoniacal system using an electrically enhanced method under ultrasonic waves.Five main influencing factors were investigated by a single-factor experiment to determine the optimum parameters.Cyclic voltammetry and linear sweep voltammetry were applied to investigating the reaction mechanism of electrically enhanced cementation of cadmium on a zinc plate.The optimum parameters were a temperature of 35℃,a cathode-to-anode area ratio of 1:2,an anode current density of 15 A/m2,an ultrasonic frequency of 40 kHz a reaction time of 6 h and an ultrasonic power of 100 W.The extraction rate was 99.21%,and the production of byproduct“floating sponge cadmium”was inhibited.The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that ultrasonic waves can promote and accelerate the replacement reaction,decrease the voltage requirement of the electrically enhanced replacement reaction,and change the reaction steps.In addition,increasing the temperature and ultrasonic power can promote and accelerate electrically enhanced replacement reactions and decrease the electric potential requirement. 展开更多
关键词 CADMIUM electrically enhanced cementation ultrasonic electrochemical mechanism floating sponge cadmium
下载PDF
Galena-pyrolusite co-extraction in sodium chloride solution and its electrochemical analysis 被引量:1
8
作者 龙怀中 柴立元 覃文庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期897-902,共6页
The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimize... The co-extraction behavior of galena-pyrolusite in a sodium chloride solution and the electrochemical mechanism of this process were investigated,and some factors affecting the leaching rate of Pb and Mn were optimized.The results show that all the factors such as the concentration of NaCl,HCl and pyrolusite ore,reaction time,temperature,adding times of HCl,affect the leaching rate of Pb.The main affecting factors are the concentration of NaCl,reaction time and temperature.The Tafel polarization curves and EIS plots of the galena and pyrolusite in the NaCl solution demonstrate that during the oxidation process of galena mineral electrode,film forms on the galena surface,which prevents galena from deeper oxidation.However,the film resistance can be greatly reduced in the presence of sodium chloride,thus promoting the reaction rate of galena. 展开更多
关键词 GALENA PYROLUSITE co-extraction behavior electrochemical mechanism
下载PDF
Corrosion inhibiting performance and mechanism of protic ionic liquids as green brass inhibitors in nitric acid 被引量:1
9
作者 Pengcheng Hu Zhitao Wu +3 位作者 Junlin Wang Yuqing Huang Quanyou Liu Shu-Feng Zhou 《Green Energy & Environment》 SCIE CSCD 2020年第2期214-222,共9页
Four protic ionic liquids(ILs)were synthesized via a one-step method by using benzotriazole(BTA)and benzimidazole as cations,and benzenesulfonic acid and 2-naphthalenesulfonic acid(NSA)as anions.These ILs were used as... Four protic ionic liquids(ILs)were synthesized via a one-step method by using benzotriazole(BTA)and benzimidazole as cations,and benzenesulfonic acid and 2-naphthalenesulfonic acid(NSA)as anions.These ILs were used as green corrosion inhibitors for brass specimens in a nitric acid solution.The structure of the protic ILs was characterized by 1H-NMR,13C-NMR,and FT-IR spectroscopy.The effects of the IL structure,IL concentration,acid concentration,and corrosion time on the surface morphology of brass specimens and the inhibition efficiency(η%)of ILs were investigated by the weight loss method combined with SEM and EDS spectroscopy.Polarization curves and impedance spectroscopy were used to analyze the electrochemical corrosion inhibition mechanism of ILs.Results showed that IL synthesis was a proton transfer process,and the proton of the–SO3H group on NSA was deprived by BTA.IL[BTA][NSA],which had a high charge density and large conjugateπband,was the most effective inhibitor for brass corrosion.Theη%of[BTA][NSA]decreased with the increase in acid concentration and corrosion time,which showed an increment with the increase in[BTA][NSA]concentration.The higher theη%of[BTA][NSA]is,the smoother the surface of the brass specimens is,and the smaller the undistributed area of Cu element will be.Corrosion inhibiting mechanism from electrochemical analysis indicated that the addition of[BTA][NSA]increased the polarization resistance of the brass electrode significantly and suppressed both anodic and cathodic reactions. 展开更多
关键词 Protic ionic liquid Corrosion inhibitor electrochemical mechanism BRASS
下载PDF
Electrochemical behavior of tungsten in(NaCl–KCl–NaF–WO_3)molten salt 被引量:3
10
作者 Jie Li Xin-Yu Zhang +2 位作者 Ya-Bin Liu Yun-Gang Li Ri-Ping Liu 《Rare Metals》 SCIE EI CAS CSCD 2013年第5期512-517,共6页
Abstract The electrochemical reaction mechanism and electrocrystaUization process of tungsten in the NaCl- KCl-NaF-WO3 molten salt were investigated at 973 K (700℃) by means of cyclic voltammetry, chronopotentiomet... Abstract The electrochemical reaction mechanism and electrocrystaUization process of tungsten in the NaCl- KCl-NaF-WO3 molten salt were investigated at 973 K (700℃) by means of cyclic voltammetry, chronopotentiometry, and chronoamperometry techniques. The results show that the electrochemical reaction process of tungsten in the NaCl-KCl-NaF-WO3 molten salt system is a quasireversible process mix-controlled by ion diffusion rate and electron transport rate. Tungsten ion in this system is reduced to W(0) in two steps. The electrocrystallization process of tungsten is found to be an instantaneous, hemispheroid three-dimensional nucleation process and the tungsten ion diffusion coefficient of 2.361 × 10^-4 cm2.s^-1 is obtained at experimental conditions. 展开更多
关键词 NaCl-KClNaF-WO3 TUNGSTEN electrochemical reduction mechanism Electrocrystallization process
下载PDF
Mechano-electrochemical perspectives on flexible lithium-ion batteries 被引量:4
11
作者 Na Li Shuangquan Yang +2 位作者 Haosen Chen Shuqiang Jiao Weili Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期1019-1036,共18页
With the advent of flexible/wearable electronic devices,flexible lithium-ion batteries(LIBs)have attracted significant attention as optimal power source candidates.Flexible LIBs with good flexibility,mechanical stabil... With the advent of flexible/wearable electronic devices,flexible lithium-ion batteries(LIBs)have attracted significant attention as optimal power source candidates.Flexible LIBs with good flexibility,mechanical stability,and high energy density are still an enormous challenge.In recent years,many complex and diverse design methods for flexible LIBs have been reported.The design and evaluation of ideal flexible LIBs must take into consideration both mechanical and electrochemical factors.In this review,the recent progress and challenges of flexible LIBs are reviewed from a mechano-electrochemical perspective.The recent progress in flexible LIB design is addressed concerning flexible material and configuration design.The mechanical and electrochemical evaluations of flexible LIBs are also summarized.Furthermore,mechano-electrochemical perspectives for the future direction of flexible LIBs are also discussed.Finally,the relationship between mechanical loading and the electrode process is analyzed from a mechano-electrochemical perspective.The evaluation of flexible LIBs should be based on mechano-electrochemical processes.Reviews and perspectives are of great significance to the design and practicality of flexible LIBs,which is contributed to bridging the gap between laboratory exploration and practical applications. 展开更多
关键词 flexible lithium-ion batteries flexible materials structural design mechanical and electrochemical coupling
下载PDF
Interaction of Mechanical and Electrochemical Factors duringCorrosion Fatigue of Fe-26Cr-1Mo Stainless Steel in 1M H_2SO_4 Solution
12
作者 Jianqiu WANG Jin LI Ziyong ZHU and Wei KE (Corrosion Science Laboratory, Institute of Corrosion and Protection of Metals Chinese Academy of Sciences, Shenyang, 110015, China)Qishan ZANG and Zhongguang WANG (State Key Laboratory for Fatigue and Fracture 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第3期181-186,共6页
The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic ... The cyclic plastic straining electrode technique has been used to investigate the transient electrochemical behaviour of Fe-26Cr1Mo stainless steel in 1M H2SO4 solution at a passive potential.The influence of plastic strain amplitude and plastic strain rate on the dissolution current response was analysed. The experimental results showed that the transient current was dependent on the competitive process of the surface film rupture and repassivation of the new surface. The high plastic strain amplitude and the high plastic strain rate caused a change of electrochemical activity of specimen surface. In the condition of low strain amplitude and strain rate, the characteristics of current response was mainly relative tp the process of new surface repassivation.The competition kinetics has been analysed through the comparison of plastic strain rate and repassivating rate 展开更多
关键词 Mo Cr Interaction of Mechanical and electrochemical Factors duringCorrosion Fatigue of Fe-26Cr-1Mo Stainless Steel in 1M H2SO4 Solution Fe SO
下载PDF
Scalable synthesized high-performance TiO_(2)-Si-C hybrid anode for lithium batteries
13
作者 Liao Shen Chengjie Xu +6 位作者 Jingguo Gao Jianming Tao Qiaobao Zhang Yue Chen Yingbin Lin Zhigao Huang Jiaxin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期348-358,I0009,共12页
At present,developing a simple strategy to effectively solve the shackles of volume expansion,poor conductivity and interface compatibility faced by Si-C anode in lithium batteries(LIBs)is the key to its commercializa... At present,developing a simple strategy to effectively solve the shackles of volume expansion,poor conductivity and interface compatibility faced by Si-C anode in lithium batteries(LIBs)is the key to its commercialization.Here,low-cost nano-Si powders were prepared from Si-waste of solar-cells by sanding treatment,which can effectively reduce the commercialization cost for Si-C anode.Furthermore,micro-nano structured Gr@Si/C/TiO_(2) anode materials with graphite(Gr)as the inner core,TiO_(2)-doped and carbon-coated Si as the outer coating-layer,were synthesized at kilogram-scale per milling batch.Comprehensive characterization results indicate that TiO_(2)-doped carbon layer can improve the interface compatibility with the electrolyte,further promote the reduction of electrode polarization,and finally enhance the battery performance for the Gr@Si/C/TiO_(2) anodes.Accordingly,Gr@Si/C/TiO_(2) composites can output excellent LIB performance,especially with high initial coulombic efficiency(ICE)of 82.51%and large average reversible capacity of~810 mA h g^(-1) at 0.8 A g^(-1) after 1000 cycles.Moreover,Gr@Si/C/TiO_(2)‖NCM811 pouch full cells deliver impressive performance especially with high energy density of~489.3 W h kg^(-1) based on the total weight of active materials,suggesting its promising application in the high performance LIBs. 展开更多
关键词 Lithium-ion batteries Si-C anodes Kilogram-scale preparation Interface compatibility electrochemical mechanism
下载PDF
Microstructure optimization and electrochemical behavior of in-situ growth Ramsdellite-MnO_(2)@NCA-LDH@CC for supercapacitors and oxygen evolution reaction catalysts
14
作者 Xinpeng Huang Yanli Li +6 位作者 Xuehua Yan Feng Zhang Chu Chu Jili Wu Jianmei Pan Zohreh Shahnavaz Jamile Mohammadi Moradian 《Journal of Materiomics》 SCIE CSCD 2024年第3期552-565,共14页
Supercapacitors are electrochemical energy storage devices with great potential applications.Mean-while,the oxygen evolution reaction(OER)determines the efficiency of some electrochemical energy conversions.This study... Supercapacitors are electrochemical energy storage devices with great potential applications.Mean-while,the oxygen evolution reaction(OER)determines the efficiency of some electrochemical energy conversions.This study aims at constructing,exploring,and optimizing Ramsdellite-MnO_(2)@NiCoAl-LDH@CC(R-MNCA@CC)composites.The effect of microstructure and Al role on the performance is investigated when R-MNCA@CC was used as supercapacitor electrode material and OER catalyst.Coral-like R-MNCA@CC in-situ growth composites were synthesized by a two-step hydrothermal method.R-MNCA@CC-2(molar ratio of Ni:Co:Al is 1:1:1)performs the best with the largest specific capacitance,1,742 F/g at 1 A/g,increased by 797%and 1,489%compared to that of NiCoAl-LDH and Ramsdellite-MnO_(2).The capacitance retention rate of the R-MNCA@CC-2//AC@CC supercapacitor is 80.1%after 5,000 cycles at 0.8 A/g.The overpotential for driving an OER to reach 10 m/cm^(2)is only 276 mV,which is lower than that of commercial IrO_(2)(300 mV).Noteworthy,we propose a view that is“competing to trigger redox re-action”of electrochemical active sites in LDH during electrochemical processes derived from a discrepancy between theory and experimental results. 展开更多
关键词 SUPERCAPACITORS Oxygen evolution reaction MnO_(2)@NiCoAl-LDH composites Microstructure optimization electrochemical mechanism
原文传递
Decoding lithium batteries through advanced in situ characterization techniques 被引量:7
15
作者 Mei Yang Ruyi Bi +2 位作者 Jiangyan Wang Ranbo Yu Dan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第5期965-989,共25页
Given the energy demands of the electromobility market,the energy density and safety of lithium batteries(LBs)need to be improved,whereas its cost needs to be decreased.For the enhanced performance and decreased cost,... Given the energy demands of the electromobility market,the energy density and safety of lithium batteries(LBs)need to be improved,whereas its cost needs to be decreased.For the enhanced performance and decreased cost,more suitable electrode and electrolyte materials should be developed based on the improved understanding of the degradation mechanisms and structure–performance correlation in the LB system.Thus,various in situ characterization technologies have been developed during the past decades,providing abundant guidelines on the design of electrode and electrolyte materials.Here we first review the progress of in situ characterization of LBs and emphasize the feature of the multi-model coupling of different characterization techniques.Then,we systematically discuss how in situ characterization technologies reveal the electrochemical processes and fundamental mechanisms of different electrode systems based on representative electrode materials and electrolyte components.Finally,we discuss the current challenges,future opportunities,and possible directions to promote in situ characterization technologies for further improvement of the battery performance. 展开更多
关键词 in situ characterization techniques multi-modal coupling lithium batteries electrochemical mechanism
下载PDF
Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery 被引量:5
16
作者 Quan Zong Wei Du +6 位作者 Chaofeng Liu Hui Yang Qilong Zhang Zheng Zhou Muhammad Atif Mohamad Alsalhi Guozhong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期13-27,共15页
Ammonium vanadate with bronze structure(NH_(4)V_(4)O_(10))is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost.However,the extraction of NH^(+)_(4) at a high voltage du... Ammonium vanadate with bronze structure(NH_(4)V_(4)O_(10))is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost.However,the extraction of NH^(+)_(4) at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation.In this work,partial NH^(+)_(4) ions were pre-removed from NH_(4)V_(4)O_(10) through heat treatment;NH_(4)V_(4)O_(10) nanosheets were directly grown on carbon cloth through hydrothermal method.Defi-cient NH_(4)V_(4)O_(10)(denoted as NVO),with enlarged interlayer spacing,facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure.The NVO nanosheets delivered a high specific capac-ity of 457 mAh g^(−1) at a current density of 100 mA g^(−1) and a capacity retention of 81%over 1000 cycles at 2 A g^(−1).The initial Coulombic efficiency of NVO could reach up to 97%compared to 85%of NH_(4)V_(4)O_(10) and maintain almost 100%during cycling,indicating the high reaction reversibility in NVO electrode. 展开更多
关键词 Deficient ammonium vanadate Large interlayer spacing Reversible redox reaction electrochemical mechanism
下载PDF
Hydrometallurgical process for extracting bismuth from by-product of lead smelting based on methanesulfonic acid system 被引量:3
17
作者 Tian-xiang NAN Jian-guang YANG +3 位作者 Chao-bo TANG Wen-chao WANG Wei LONG Ji-yuan YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期319-332,共14页
A new hydrometallurgical process based on the methanesulfonic acid system was proposed to extract the bismuth efficiently from by-products of lead smelting.The bismuth extraction process included electrorefining,oxida... A new hydrometallurgical process based on the methanesulfonic acid system was proposed to extract the bismuth efficiently from by-products of lead smelting.The bismuth extraction process included electrorefining,oxidation leaching,and electrodeposition.The optimum conditions of the bismuth extraction process were determined by a single-factor test.The bismuth plate with a purity of 99.8%was obtained under the optimum conditions.Cyclic voltammetry and linear sweep voltammetry were applied to investigating the cathode reaction mechanism of electrorefining.The results show that lead deposition,bismuth deposition,and hydrogen evolution occur at the cathode,and the reactions of metals deposition are irreversible and diffusion-controlled.In addition,decreasing the temperature and acidity can improve the purity of the cathodic product(lead powder)in the electrorefining process. 展开更多
关键词 BISMUTH hydrometallurgical process methanesulfonic acid system electrochemical mechanism
下载PDF
The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process 被引量:4
18
作者 Tianjing Wu Chenyang Zhang +5 位作者 Guoqiang Zou Jiugang Hu Limin Zhu Xiaoyu Cao Hongshuai Hou Xiaobo Ji 《Science China Materials》 SCIE EI CSCD 2019年第8期1127-1138,共12页
The excellent energy storage performance of covalent sulfur-carbon material has gradually attracted great interest. However, in the electrochemical sodium storage process, the bond evolution mechanism remains an elusi... The excellent energy storage performance of covalent sulfur-carbon material has gradually attracted great interest. However, in the electrochemical sodium storage process, the bond evolution mechanism remains an elusive topic. Herein, we develop a one-step annealing strategy to achieve a high covalent sulfur-carbon bridged hybrid(HCSC)utilizing phenylphosphinic acid as the carbon-source/catalyst and sodium sulfate as the sulfur-precursor/salt template, in which the sulfur mainly exists in the forms of C–S–C and C–S–S–C. Notably, most of the bridge bonds are electrochemically cleaved when the cycling voltage is lower than0.6 V versus Na/Na+, leading to the appearance of two visible redox peaks in the following cyclic voltammogram(CV) tests.The in-situ and ex-situ characterizations demonstrate that S^2- is formed in the reduction process and the carbon skeleton is concomitantly and irreversibly isomerized. Thus, the cleaved sulfur and isomerized carbon could jointly contribute to the sodium storage in 0.01–3.0 V. In a Na-S battery system, the activated HCSC in cut off voltage window of 0.6–2.8 V achieves a high reversible capacity(770 mA h g^-1 at 300 mA g^-1). This insight reveals the charge storage mechanism of sulfur-carbon bridged hybrid and provides an improved enlightenment on the interfacial chemistry of electrode materials. 展开更多
关键词 one-step method sulfur-carbon bridged complex electrochemical mechanism sodium storage
原文传递
Manipulating metal-sulfur interactions for achieving high-performance S cathodes for room temperature Li/Na-sulfur batteries 被引量:3
19
作者 Ying-Ying Dai Chun-Mei Xu +6 位作者 Xiao-Hao Liu Xiang-Xi He Zhuo Yang Wei-Hong Lai Li Li Yun Qiao Shu-Lei Chou 《Carbon Energy》 CAS 2021年第2期253-270,共18页
Rechargeable lithium/sodium-sulfur batteries working at room temperature(RT-Li/S,RT-Na/S)appear to be a promising energy storage system in terms of high theoretical energy density,low cost,and abundant resources in na... Rechargeable lithium/sodium-sulfur batteries working at room temperature(RT-Li/S,RT-Na/S)appear to be a promising energy storage system in terms of high theoretical energy density,low cost,and abundant resources in nature.They are,thus,considered as highly attractive candidates for future application in energy storage devices.Nevertheless,the solubility of sulfur species,sluggish kinetics of lithium/sodium sulfide compounds,and high reactivity of metallic anodes render these cells unstable.As a consequence,metal-sulfur batteries present low reversible capacity and quick capacity loss,which hinder their practical application.Investigations to address these issues regarding S cathodes are critical to the increase of their performance and our fundamental understanding of RT-Li/S and RT-Na/S battery systems.Metal-sulfur interactions,recently,have attracted considerable attention,and there have been new insights on pathways to high‐performance RT-Li/Na sulfur batteries,due to the following factors:(1)deliberate construction of metal-sulfur interactions can enable a leap in capacity;(2)metal-sulfur interactions can confine S species,as well as sodium sulfide compounds,to stop shuttle effects;(3)traces of metal species can help to encapsulate a high loading mass of sulfur with high‐cost efficiency;and(4)metal components make electrodes more conductive.In this review,we highlight the latest progress in sulfide immobilization via constructing metal bonding between various metals and S cathodes.Also,we summarize the storage mechanisms of Li/Na as well as the metal-sulfur interaction mechanisms.Furthermore,the current challenges and future remedies in terms of intact confinement and optimization of the electrochemical performance of RT-Li/Na sulfur systems are discussed in this review. 展开更多
关键词 electrochemical mechanism metal-sulfur interactions room temperature Li/Na sulfur batteries S-confinement strategy
下载PDF
Anode oxidation of HCHO in THPED-containing electroless copper plating solution 被引量:1
20
作者 郑雅杰 肖发新 +1 位作者 邹伟红 王勇 《Journal of Central South University of Technology》 EI 2008年第5期669-673,共5页
The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry cur... The electrochemical mechanism of anode oxidation of HCHO in electroless copper plating solution with N, N, N′, N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) was investigated by measuring cyclic voltammetry curves and anodic polarization curves. Three different oxidation peaks occur at the potentials of -0.62 V (Peak 1), -0.40 V (Peak 2) and -0.17 V (Peak 3) in the anode oxidation process of THPED-containing solution. The reaction at Peak 1, a main oxidation reaction, is the irreversible reaction of adsorbed HCHO with hydrogen evolution. The reaction at Peak 2, a secondary oxidation reaction, is the quasi-reversible reaction of adsorbed HCHO without hydrogen evolution. The reaction at Peak 3 is the irreversible oxidation of anode copper. The current density of Peak 1 increases gradually, that of Peak 2 remains constant and that of Peak 3 decreases with the increase of HCHO concentration. The current density of Peak 3 increases with the increase of THPED concentration and the complexation of THPED promotes the dissolution of anode copper. 展开更多
关键词 electroless copper plating anode oxidation THPED HCHO electrochemical mechanism
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部