Introduction: Today, information technology is considered as an important national development principle in each country which is applied in different fields. Health care as a whole and the hospitals could be regarded...Introduction: Today, information technology is considered as an important national development principle in each country which is applied in different fields. Health care as a whole and the hospitals could be regarded as a field and organizations with most remarkable IT applications respectively. Although different benchmarks and frameworks have been developed to assess different aspects of Hospital Information Systems (HISs) by various researchers, there is not any suitable reference model yet to benchmark HIS in the world. Electronic Medical Record Adoption Model (EMRAM) has been currently presented and is globally well-known to benchmark the rate of HIS utilization in the hospitals. Notwithstanding, this model has not been introduced in Iran so far. Methods: This research was carried out based on an applied descriptive method in three private hospitals of Isfahan—one of the most important provinces of Iran—in the year 2015. The purpose of this study was to investigate IT utilization stage in three selected private hospitals. Conclusion: The findings revealed that HIS is not at the center of concern in studied hospitals and is in the first maturity stage in accordance with EMRAM. However, hospital managers are enforced and under the pressure of different beneficiaries including insurance companies to improve their HIS. Therefore, it could be concluded that these types of hospitals are still far away from desirable conditions and need to enhance their IT utilization stage significantly.展开更多
High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the...High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.展开更多
By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L...By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.展开更多
We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly ...We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.展开更多
In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3A...In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.展开更多
A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. ...A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius.展开更多
Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent ...Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.展开更多
In this article, spacetime is modeled as a quantum mechanical sonic medium consisting of Planck length oscillations at Planck frequency. Planck length-time oscillations give spacetime its physical constants of c, G an...In this article, spacetime is modeled as a quantum mechanical sonic medium consisting of Planck length oscillations at Planck frequency. Planck length-time oscillations give spacetime its physical constants of c, G and ħ. Oscillating spacetime is proposed to be the single universal field that generates and unifies everything in the universe. The 17 fields of quantum field theory are modeled as lower frequency resonances of oscillating spacetime. A model of an electron is proposed to be a rotating soliton wave in this medium. An electron appears to have wave-particle duality even though it is fundamentally a quantized wave. This soliton wave can momentarily be smaller than a proton in a high energy collision or can have a relatively large volume of an atom’s orbital wave function. Finding an electron causes it to undergo a superluminal collapse to a smaller wave size. This gives an electron its particle-like properties when detected. The proposed wave-based electron model is tested and shown to have an electron’s approximate energy, de Broglie wave properties and undetectable volume. Most important, this electron model is shown to also generate an electron’s electrostatic and gravitational forces. The gravitational properties are derived from the nonlinearity of this medium. When an electron’s gravitational and electrostatic forces are modeled as distortions of soliton waves, the equations become very simple, and a clear connection emerges between these forces. For example, the gravitational force between two Planck masses equals the electrostatic force between two Planck charges. Both force magnitudes equal ħc/r2.展开更多
Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be u...Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.展开更多
Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated ...Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center.展开更多
Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface ...Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface contamination states of real sample result in notable difference between simulations and experiments. In this paper, in order to calculate SEY of metal under complicated surface state accurately, we propose a synthetic semi-empirical physical model. The processes of excitation of internal secondary electron(SE) and movement toward surface can be simulated using this model.This model also takes into account the influences of incident angle and backscattering electrons as well as the surface gas contamination. In order to describe internal electronic states accurately, the penetration coefficient of incident electron is described as a function of material atom number. Directions of internal electrons are set to be uniform in each angle. The distribution of internal SEs is proposed by considering both the integration convergence and the cascade scattering process.In addition, according to the experiment data, relationship among desorption gas quantities, sample ultimate temperature and SEY is established. Comparing with experiment results, this synthetic semi-empirical physical model can describe the SEY of metal better than former formulas, especially in the aspect of surface contaminated states. The proposed synthetic semi-empirical physical model and presented results in this paper can be helpful for further studying SE emission, and offer an available method for estimating and taking advantage of SE emission accurately.展开更多
A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characterist...A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.展开更多
Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded ...Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.展开更多
The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacit...The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacity(EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively.展开更多
Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 med...Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 medical linac.Methods and Materials:1.We adapted the treatment head configuration of BJ-6 medical linac made by Beijing Medical Equipment Institute(BMEI)as the radiation system for this study.2.Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum,the spatial intensity distribution,and the beam incidence angle.3.Analyze the 6 MV X-ray beam characteristics of PDDc,OARc in a water phantom by using Monte Carlo simulation(BEAMnrc,DOSXYZnrc)for a preset of the initial electron beam parameters which have been determined by TRSV,do the comparisons of the measured results of PDDm,OARm in a real water phantom,and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%.Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%.Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ-6,modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.展开更多
The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer r...The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors.展开更多
This summary paper will discuss the concept of forensic evidence and evidence collection methods. Emphasis will be placed on the techniques used to collect forensically sound digital evidence for the purpose of introd...This summary paper will discuss the concept of forensic evidence and evidence collection methods. Emphasis will be placed on the techniques used to collect forensically sound digital evidence for the purpose of introduction to digital forensics. This discussion will thereafter result in identifying and categorizing the different types of digital forensics evidence and a clear procedure for how to collect forensically sound digital evidence. This paper will further discuss the creation of awareness and promote the idea that competent practice of computer forensics collection is important for admissibility in court.展开更多
Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The onedimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the...Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The onedimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the microwave frequency on the formation of air plasma. Simulation results show that, the filamentary plasma array propagating toward the microwave source is formed at different microwave frequencies. As the microwave frequency decreases, the ratio of the distance between two adjacent plasma filaments to the corresponding wavelength remains almost unchanged(on the order of 1/4), while the plasma front propagates more slowly due to the increase in the formation time of the new plasma filament.展开更多
Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the nP^2P^o1/2 (n=7-50) and np^2P^o3/2 (n=7-50) spectrum series for the francium atom are calculated. Th...Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the nP^2P^o1/2 (n=7-50) and np^2P^o3/2 (n=7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.展开更多
The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver na...The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.展开更多
文摘Introduction: Today, information technology is considered as an important national development principle in each country which is applied in different fields. Health care as a whole and the hospitals could be regarded as a field and organizations with most remarkable IT applications respectively. Although different benchmarks and frameworks have been developed to assess different aspects of Hospital Information Systems (HISs) by various researchers, there is not any suitable reference model yet to benchmark HIS in the world. Electronic Medical Record Adoption Model (EMRAM) has been currently presented and is globally well-known to benchmark the rate of HIS utilization in the hospitals. Notwithstanding, this model has not been introduced in Iran so far. Methods: This research was carried out based on an applied descriptive method in three private hospitals of Isfahan—one of the most important provinces of Iran—in the year 2015. The purpose of this study was to investigate IT utilization stage in three selected private hospitals. Conclusion: The findings revealed that HIS is not at the center of concern in studied hospitals and is in the first maturity stage in accordance with EMRAM. However, hospital managers are enforced and under the pressure of different beneficiaries including insurance companies to improve their HIS. Therefore, it could be concluded that these types of hospitals are still far away from desirable conditions and need to enhance their IT utilization stage significantly.
文摘High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.
文摘By use of self-consistent field Xα scattered-wave (SCF-Xα-SW) method, the electronic structure was calculated for four models of Ti4Al14X (X=Al, Fe, Ni and Cu) clusters. The Ti4Al14X cluster was developed based on L12 Al3Ti-base intermetallic compound. The results are presented using the density of states (DOS) and one-electron properties, such as relative binding tendency between the atom and the model cluster, and hybrid bonding tendency between the alloying element and the host atoms. By comparing the four models of Ti4Al14X cluster, the effect of the Fe, Ni or Cu atom on the physical properties of Al3Ti-based L12 intermetallic compounds is analyzed. The results indicate that the addition of the Fe, Ni or Cu atom intensifies the relative binding tendency between Ti atom and Ti4Al14X cluster. It was found that the Fermi level (EF) lies in a maximum in the DOS for Ti4Al14Al cluster; on the contrary, the EF comes near a minimum tn the DOS for Ti4Al14X (X=Fe, Ni and Cu) cluster. Thus the L12 crystal structure for binary Al3Ti alloy is unstable, and the addition of the Fe, Ni or Cu atom to Al3Ti is benefical to stabilize L12 crystal structure. The calculation also shows that the Fe, Ni or Cu atom strengthens the hybrid bonding tendency between the central atom and the host atoms for Ti4Al14X cluster and thereby may lead to the constriction of the lattice of Al3Ti-base intermetallic compounds.
基金Supported by the National Natural Science Foundation of China (Grant No.11774152)National Key R&D Program of China(Grant No.2016YFA0300401)。
文摘We show that a suitable combination of flat-band ferromagnetism,geometry and nontrivial electronic band topology can give rise to itinerant topological magnons.An SU(2) symmetric topological Hubbard model with nearly flat electronic bands,on a Kagome lattice,is considered as the prototype.This model exhibits ferromagnetic order when the lowest electronic band is half-filled.Using the numerical exact diagonalization method with a projection onto this nearly flat band,we can obtain the magnonic spectra.In the flat-band limit,the spectra exhibit distinct dispersions with Dirac points,similar to those of free electrons with isotropic hoppings,or a local spin magnet with pure ferromagnetic Heisenberg exchanges on the same geometry.Significantly,the non-flatness of the electronic band may induce a topological gap at the Dirac points,leading to a magnonic band with a nonzero Chern number.More intriguingly,this magnonic Chern number changes its sign when the topological index of the electronic band is reversed,suggesting that the nontrivial topology of the magnonic band is related to its underlying electronic band.Our work suggests interesting directions for the further exploration of,and searches for,itinerant topological magnons.
基金financially supported by the Science Foundation for International Cooperation of Sichuan Province (2014HH0016)the Fundamental Research Funds for the Central Universities (SWJTU2014: A0920502051113-10000)National Magnetic Confinement Fusion Science Program (2011GB112001)
文摘In this work, we choose Nb3Al/Nb3Sn as a new test case for flat/steep band model of superconductivity. Based on the density functional theory in the generalized gradient approximation, the electronic structure of Nb3Al/ Nb3Sn has been studied. The obtained results agree well with those of the earlier studies and show clearly fiat bands around the Fermi level. The steep bands as characterized in this work locate around the M point in the first Brillouin zone. The obtained results reveal that Nb3Al/Nb3Sn fits more to the "Flat/steep" band model than to the van-Hove singularity scenario. The fiat/steep band condition for superconductivity implies a different thermodynamic behavior of superconductors other than that predicted from the conventional BCS theory. This observation sets up an indicator for selecting a suitable superconductor when its large-scale industrial use is needed, for example, in superconducting maglev system or ITER project.
文摘A model for the internal structure of the electron using classical physics equations has been previously published by the author. The model employs both positive and negative charges and positive and negative masses. The internal attributes of the electron structure were calculated for both ring and spherical shapes. Further examination of the model reveals an instability for the ring shape. The spherical shape appears to be stable, but relies on tensile or compressive forces of the electron material for stability. The model is modified in this document to eliminate the dependency on material forces. Uniform stability is provided solely by balancing electrical and centrifugal forces. This stability is achieved by slightly elongating the sphere along the spin axis to create a prolate ellipsoid. The semi-major axis of the ellipsoid is the spin axis of the electron, and is calculated to be 1.20% longer than the semi-minor axis, which is the radius of the equator. Although the shape deviates slightly from a perfect sphere, the electric dipole moment is zero. In the author’s previously published document, the attributes of the internal components of the electron, such as charge and mass, were calculated and expressed as ratios to the classically measured values for the composite electron. It is interesting to note that all of these ratios are nearly the same as the inverse of the Fine Structure Constant, with differences of less than 15%. The electron model assumed that the outer surface charge was fixed and uniform. By allowing the charge to be mobile and the shape to have a particular ellipticity, it is shown that the calculated charge and mass ratios for the model can be exactly equal to the Fine Structure Constant and the Constant plus one. The electron radius predicted by the model is 15% greater than the Classical Electron Radius.
文摘Hot carrier effects of p MOSFETs with different oxide thicknesses are studied in low gate voltage range.All electrical parameters follow a power law relationship with stress time,but degradation slope is dependent on gate voltage.For the devices with thicker oxides,saturated drain current degradation has a close relationship with the product of gate current and electron fluence.For small dimensional devices,saturated drain current degradation has a close relationship with the electron fluence.This degradation model is valid for p MOSFETs with 0 25μm channel length and different gate oxide thicknesses.
文摘In this article, spacetime is modeled as a quantum mechanical sonic medium consisting of Planck length oscillations at Planck frequency. Planck length-time oscillations give spacetime its physical constants of c, G and ħ. Oscillating spacetime is proposed to be the single universal field that generates and unifies everything in the universe. The 17 fields of quantum field theory are modeled as lower frequency resonances of oscillating spacetime. A model of an electron is proposed to be a rotating soliton wave in this medium. An electron appears to have wave-particle duality even though it is fundamentally a quantized wave. This soliton wave can momentarily be smaller than a proton in a high energy collision or can have a relatively large volume of an atom’s orbital wave function. Finding an electron causes it to undergo a superluminal collapse to a smaller wave size. This gives an electron its particle-like properties when detected. The proposed wave-based electron model is tested and shown to have an electron’s approximate energy, de Broglie wave properties and undetectable volume. Most important, this electron model is shown to also generate an electron’s electrostatic and gravitational forces. The gravitational properties are derived from the nonlinearity of this medium. When an electron’s gravitational and electrostatic forces are modeled as distortions of soliton waves, the equations become very simple, and a clear connection emerges between these forces. For example, the gravitational force between two Planck masses equals the electrostatic force between two Planck charges. Both force magnitudes equal ħc/r2.
基金the start-up fund provided by the Engineering Science and Mechanics Department, College of Engineering, and Materials Research Institute at the Pennsylvania State University (215-37 1001 cc:H.Cheng)
文摘Transient electronics are an emerging class of electronics with the unique characteristic to completely dissolve within a programmed period of time. Since no harmful byproducts are released, these electronics can be used in the human body as a diagnostic tool, for instance, or they can be used as environmentally friendly alternatives to existing electronics which disintegrate when exposed to water. Thus, the most crucial aspect of transient electronics is their ability to disintegrate in a practical manner and a review of the literature on this topic is essential for understanding the current capabilities of transient electronics and areas of future research. In the past, only partial dissolution of transient electronics was possible, however, total dissolution has been achieved with a recent discovery that silicon nanomembrane undergoes hydrolysis. The use of single- and multi-layered structures has also been explored as a way to extend the lifetime of the electronics. Analytical models have been developed to study the dissolution of various functional materials as well as the devices constructed from this set of functional materials and these models prove to be useful in the design of the transient electronics.
文摘Previous models of the free electron using classical physics equations have predicted attributes that are inconsistent with the experimentally observed attributes. For example, the magnetic moment has been calculated for the observed spinning electric charge. For the calculated moment to equal the observed moment, the electron would either have to spin at two hundred times the speed of light or have a charge radius two hundred times greater than the classical radius. A similar inconsistency results when the mass derived from the spin angular momentum is compared with the observed mass. A classical model is herein proposed which eliminates the magnetic moment inconsistency and also predicts the radius of the electron. The novel feature of the model is the replacement of a single charge with two opposite charges, one on the outer surface of the electron and the other at the center.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1537211 and 11675278)the China Postdoctoral Science Foundation(Grant No.2016M602944XB)
文摘Calculations of secondary electron yield(SEY) by physical formula can hardly accord with experimental results precisely. Simplified descriptions of internal electron movements in the calculation and complex surface contamination states of real sample result in notable difference between simulations and experiments. In this paper, in order to calculate SEY of metal under complicated surface state accurately, we propose a synthetic semi-empirical physical model. The processes of excitation of internal secondary electron(SE) and movement toward surface can be simulated using this model.This model also takes into account the influences of incident angle and backscattering electrons as well as the surface gas contamination. In order to describe internal electronic states accurately, the penetration coefficient of incident electron is described as a function of material atom number. Directions of internal electrons are set to be uniform in each angle. The distribution of internal SEs is proposed by considering both the integration convergence and the cascade scattering process.In addition, according to the experiment data, relationship among desorption gas quantities, sample ultimate temperature and SEY is established. Comparing with experiment results, this synthetic semi-empirical physical model can describe the SEY of metal better than former formulas, especially in the aspect of surface contaminated states. The proposed synthetic semi-empirical physical model and presented results in this paper can be helpful for further studying SE emission, and offer an available method for estimating and taking advantage of SE emission accurately.
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model of capacitive RF argon glow discharges between two parallel-plate electrodes at low pressure is employed. The influence of the secondary electron emission on the plasma characteristics in the discharges is investigated numerically by the model. The results show that as the secondary electron emission coefficient increases,the cycle-averaged electric field has almost no change; the cycle-averaged electron temperature in the bulk plasma almost does not change, but it increases in the two sheath regions; the cycle-averaged ionization rate, electron density, electron current density, ion current density, and total current density all increase. Also, the cycle-averaged secondary electron fluxes on the surfaces of the electrodes increase as the secondary electron emission coefficient increases. The evolutions of the electron flux, the secondary electron flux and the ion flux on the powered electrode increase as the secondary electron emission coefficient increases. The cycle-averaged electron pressure heating, electron Ohmic heating, electron heating, and ion heating in the two sheath regions increase as the secondary electron emission coefficient increases. The cycle-averaged electron energy loss increases with increasing secondary electron emission coefficient.
文摘Using our recently published electron’s charge electromagnetic flux manifold fiber model of the electron, described by analytical method and numerical simulations, we show how the fine structure constant is embedded as a geometrical proportionality constant in three dimensional space of its charge manifold and how this dictates the first QED term one-loop contribution of its anomalous magnetic moment making for the first time a connection of its intrinsic characteristics with physical geometrical dimensions and therefore demonstrating that the physical electron charge cannot be dimensionless. We show that the fine structure constant (FSC) α, and anomalous magnetic moment α<sub>μ</sub> of the electron is related to the sphericity of its charge distribution which is not perfectly spherical and thus has a shape, and therefore its self-confined charge possesses measurable physical dimensions. We also explain why these are not yet able to be measured by past and current experiments and how possible we could succeed.
文摘The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacity(EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively.
文摘Objective:In this study,we try to establish an initial electron beam model by combining Monte Carlo simulation method with particle dynamic calculation(TRSV)for the single 6 MV X-ray accelerating waveguide of BJ-6 medical linac.Methods and Materials:1.We adapted the treatment head configuration of BJ-6 medical linac made by Beijing Medical Equipment Institute(BMEI)as the radiation system for this study.2.Use particle dynamics calculation code called TRSV to drive out the initial electron beam parameters of the energy spectrum,the spatial intensity distribution,and the beam incidence angle.3.Analyze the 6 MV X-ray beam characteristics of PDDc,OARc in a water phantom by using Monte Carlo simulation(BEAMnrc,DOSXYZnrc)for a preset of the initial electron beam parameters which have been determined by TRSV,do the comparisons of the measured results of PDDm,OARm in a real water phantom,and then use the deviations of calculated and measured results to slightly modify the initial electron beam model back and forth until the deviations meet the error less than 2%.Results:The deviations between the Monte Carlo simulation results of percentage depth doses at PDDc and off-axis ratios OARc and the measured results of PDDm and OARm in a water phantom were within 2%.Conclusion:When doing the Monte Carlo simulation to determine the parameters of an initial electron beam for a particular medical linac like BJ-6,modifying some parameters based on the particle dynamics calculation code would give some more reasonable and more acceptable results.
文摘The satisfactory performance of electrical equipments depends on their operating temperature. In order to maintain these devices within the safe temperature limits, an effective cooling is needed. High heat transfer rate of compact in size and reliable operation are the challenges of a thermal design engineer of electronic equipment. Then, it has been simulated the transient a three-dimensional model to study the heating phenomenon with two assumption values of heat generation. To control for the working of this equipment, cooling process was modeled by choosing one from different cooling technique. Constant low speed fan at one direction of air flow was used for cooling to predict the reducing of heating temperature through working of this equipment. Numerical Solution of finite difference time domain method (FDTD) has been utilized to simulate the temporal and spatial temperature profiles through two processes, which would minimize the solution errors.
文摘This summary paper will discuss the concept of forensic evidence and evidence collection methods. Emphasis will be placed on the techniques used to collect forensically sound digital evidence for the purpose of introduction to digital forensics. This discussion will thereafter result in identifying and categorizing the different types of digital forensics evidence and a clear procedure for how to collect forensically sound digital evidence. This paper will further discuss the creation of awareness and promote the idea that competent practice of computer forensics collection is important for admissibility in court.
基金Project supported by the Fundamental Research Funds for the Central Universities,Chinathe National Natural Science Foundation of China(Grant No.61501358)
文摘Microwave breakdown at atmospheric pressure causes the formation of a discrete plasma structure. The onedimensional fluid model coupling Maxwell equations with plasma fluid equations is used to study the effect of the microwave frequency on the formation of air plasma. Simulation results show that, the filamentary plasma array propagating toward the microwave source is formed at different microwave frequencies. As the microwave frequency decreases, the ratio of the distance between two adjacent plasma filaments to the corresponding wavelength remains almost unchanged(on the order of 1/4), while the plasma front propagates more slowly due to the increase in the formation time of the new plasma filament.
基金Project supported by the Scientific Research Foundation of the State Human Resource Ministry for Returned Chinese Scholars,China (Grant No.2005LXAH06)the Research Foundation of Education Bureau of Anhui Province,China (Grant Nos.KJ2008A145 and 2002HBL05)
文摘Based on the weakest bound electron potential model theory, the Rydberg energy levels and quantum defects of the nP^2P^o1/2 (n=7-50) and np^2P^o3/2 (n=7-50) spectrum series for the francium atom are calculated. The calculated results are in excellent agreement with the 48 measured levels, and 40 energy levels for highly excited states are predicted.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501358)the Fundamental Research Funds for the Central Universities,China
文摘The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.