With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expecte...With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval.Towards this goal,this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing.Firstly,we extract local feature of images,and then cluster the features by K-means.Based on it,the visual word codebook is introduced to represent feature information of images,which hashes the codebook to the corresponding fingerprint.Finally,the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval.Extensive experiments on two public datasets validate the effectiveness of our method.Besides,the proposed method outperforms one popular searchable encryption,and the results are competitive to the state-of-the-art.展开更多
Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on blo...Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.展开更多
To improve the embedding capacity of reversible data hiding in encrypted images(RDH-EI),a new RDH-EI scheme is proposed based on adaptive quadtree partitioning and most significant bit(MSB)prediction.First,according t...To improve the embedding capacity of reversible data hiding in encrypted images(RDH-EI),a new RDH-EI scheme is proposed based on adaptive quadtree partitioning and most significant bit(MSB)prediction.First,according to the smoothness of the image,the image is partitioned into blocks based on adaptive quadtree partitioning,and then blocks of different sizes are encrypted and scrambled at the block level to resist the analysis of the encrypted images.In the data embedding stage,the adaptive MSB prediction method proposed by Wang and He(2022)is improved by taking the upper-left pixel in the block as the target pixel,to predict other pixels to free up more embedding space.To the best of our knowledge,quadtree partitioning is first applied to RDH-EI.Simulation results show that the proposed method is reversible and separable,and that its average embedding capacity is improved.For gray images with a size of 512×512,the average embedding capacity is increased by 25565 bits.For all smooth images with improved embedding capacity,the average embedding capacity is increased by about 35530 bits.展开更多
With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.Th...With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.The medical imaging data contains sensitive information,which can easily be stolen or tampered with,necessitating secure encryption schemes designed specifically to protect these images.This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images.The proposed scheme utilizes an artificial intelligence-based autoencoder to compress highresolution medical images and to facilitate fast encryption and decryption.The proposed autoencoder retains important diagnostic information even after reducing the image dimensions.The low-resolution images then undergo a four-stage encryption process.The first two encryption stages involve permutation and the next two stages involve confusion.The first two stages ensure the disruption of the structure of the image,making it secure against statistical attacks.Whereas the two stages of confusion ensure the effective concealment of the pixel values making it difficult to decrypt without secret keys.This encrypted image is then safe for storage or transmission.The proposed scheme has been extensively evaluated against various attacks and statistical security parameters confirming its effectiveness in securing medical image data.展开更多
In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive ...In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.展开更多
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the...For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.展开更多
With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color image...With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyper...The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.展开更多
Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public ...Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images.展开更多
Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi...Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.展开更多
Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of int...Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.展开更多
In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for med...In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.展开更多
Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Tr...Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.展开更多
A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. F...A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.展开更多
The generation method of the key stream and the structure of the algorithm determine the security of the cryptosystem.The classical chaotic map has simple dynamic behavior and few control parameters,so it is not suita...The generation method of the key stream and the structure of the algorithm determine the security of the cryptosystem.The classical chaotic map has simple dynamic behavior and few control parameters,so it is not suitable for modern cryptography.In this paper,we design a new 2D hyperchaotic system called 2D simple structure and complex dynamic behavior map(2D-SSCDB).The 2D-SSCDB has a simple structure but has complex dynamic behavior.The Lyapunov exponent verifies that the 2D-SSCDB has hyperchaotic behavior,and the parameter space in the hyperchaotic state is extensive and continuous.Trajectory analysis and some randomness tests verify that the 2D-SSCDB can generate random sequences with good performance.Next,to verify the excellent performance of the 2D-SSCDB,we use the 2D-SSCDB to generate a keystream for color image encryption.In the encryption algorithm,the encryption algorithm scrambles and diffuses simultaneously,increasing the cryptographic system’s security.The horizontal correlation,vertical correlation,and diagonal correlation of ciphertext are−0.0004,−0.0004 and 0.0007,respectively.The average information entropy of the ciphertext is 7.9993.In addition,the designed encryption algorithm reduces the correlation between the three channels of the color image.Security analysis shows that the color image encryption algorithm designed using 2DSSCDB has good security,can resist standard attack methods,and has high efficiency.展开更多
To improve the security and quality of decrypted images,this work proposes a reversible data hiding in encrypted image based on iterative recovery.The encrypted image is firstly generated by the pixel classification s...To improve the security and quality of decrypted images,this work proposes a reversible data hiding in encrypted image based on iterative recovery.The encrypted image is firstly generated by the pixel classification scrambling and bit-wise exclusive-OR(XOR),which improves the security of encrypted images.And then,a pixel-typemark generation method based on block-compression is designed to reduce the extra burden of key management and transfer.At last,an iterative recovery strategy is proposed to optimize the marked decrypted image,which allows the original image to be obtained only using the encryption key.The proposed reversible data hiding scheme in encrypted image is not vulnerable to the ciphertext-only attack due to the fact that the XOR-encrypted pixels are scrambled in the corresponding encrypted image.Experimental results demonstrate that the decrypted images obtained by the proposed method are the same as the original ones,and the maximum embedding rate of proposed method is higher than the previously reported reversible data hiding methods in encrypted image.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.61772561)the Key Research&Development Plan of Hunan Province(No.2018NK2012)+2 种基金the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the Science&Technology Innovation Platform and Talent Plan of Hunan Province(2017TP1022)this work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open project(No.20181901CRP04).
文摘With the massive growth of images data and the rise of cloud computing that can provide cheap storage space and convenient access,more and more users store data in cloud server.However,how to quickly query the expected data with privacy-preserving is still a challenging in the encryption image data retrieval.Towards this goal,this paper proposes a ciphertext image retrieval method based on SimHash in cloud computing.Firstly,we extract local feature of images,and then cluster the features by K-means.Based on it,the visual word codebook is introduced to represent feature information of images,which hashes the codebook to the corresponding fingerprint.Finally,the image feature vector is generated by SimHash searchable encryption feature algorithm for similarity retrieval.Extensive experiments on two public datasets validate the effectiveness of our method.Besides,the proposed method outperforms one popular searchable encryption,and the results are competitive to the state-of-the-art.
基金This work was supported by the National Natural Science Foundation of China(61672354,61702332).
文摘Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes.
基金supported by the National Natural Science Foundation of China(Nos.62272478,61872384,and 62102451)the Basic Frontier Research Foundation of Engineering University of PAP,China(Nos.WJY202012 and WJY202112)。
文摘To improve the embedding capacity of reversible data hiding in encrypted images(RDH-EI),a new RDH-EI scheme is proposed based on adaptive quadtree partitioning and most significant bit(MSB)prediction.First,according to the smoothness of the image,the image is partitioned into blocks based on adaptive quadtree partitioning,and then blocks of different sizes are encrypted and scrambled at the block level to resist the analysis of the encrypted images.In the data embedding stage,the adaptive MSB prediction method proposed by Wang and He(2022)is improved by taking the upper-left pixel in the block as the target pixel,to predict other pixels to free up more embedding space.To the best of our knowledge,quadtree partitioning is first applied to RDH-EI.Simulation results show that the proposed method is reversible and separable,and that its average embedding capacity is improved.For gray images with a size of 512×512,the average embedding capacity is increased by 25565 bits.For all smooth images with improved embedding capacity,the average embedding capacity is increased by about 35530 bits.
文摘With the rapid advancement in artificial intelligence(AI)and its application in the Internet of Things(IoT),intelligent technologies are being introduced in the medical field,giving rise to smart healthcare systems.The medical imaging data contains sensitive information,which can easily be stolen or tampered with,necessitating secure encryption schemes designed specifically to protect these images.This paper introduces an artificial intelligence-driven novel encryption scheme tailored for the secure transmission and storage of high-resolution medical images.The proposed scheme utilizes an artificial intelligence-based autoencoder to compress highresolution medical images and to facilitate fast encryption and decryption.The proposed autoencoder retains important diagnostic information even after reducing the image dimensions.The low-resolution images then undergo a four-stage encryption process.The first two encryption stages involve permutation and the next two stages involve confusion.The first two stages ensure the disruption of the structure of the image,making it secure against statistical attacks.Whereas the two stages of confusion ensure the effective concealment of the pixel values making it difficult to decrypt without secret keys.This encrypted image is then safe for storage or transmission.The proposed scheme has been extensively evaluated against various attacks and statistical security parameters confirming its effectiveness in securing medical image data.
基金Project supported by the Key Area Research and Development Program of Guangdong Province,China(Grant No.2022B0701180001)the National Natural Science Foundation of China(Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China(Grant Nos.2019B010140002 and 2020B111110002)the Guangdong–Hong Kong–Macao Joint Innovation Field Project(Grant No.2021A0505080006).
文摘In the era of big data,the number of images transmitted over the public channel increases exponentially.As a result,it is crucial to devise the efficient and highly secure encryption method to safeguard the sensitive image.In this paper,an improved sine map(ISM)possessing a larger chaotic region,more complex chaotic behavior and greater unpredictability is proposed and extensively tested.Drawing upon the strengths of ISM,we introduce a lightweight symmetric image encryption cryptosystem in wavelet domain(WDLIC).The WDLIC employs selective encryption to strike a satisfactory balance between security and speed.Initially,only the low-frequency-low-frequency component is chosen to encrypt utilizing classic permutation and diffusion.Then leveraging the statistical properties in wavelet domain,Gaussianization operation which opens the minds of encrypting image information in wavelet domain is first proposed and employed to all sub-bands.Simulations and theoretical analysis demonstrate the high speed and the remarkable effectiveness of WDLIC.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)。
文摘For digital image transmission security and information copyright,a new holographic image self-embedding watermarking encryption scheme is proposed.Firstly,the plaintext is converted to the RGB three-color channel,the corresponding phase hologram is obtained by holographic technology and the watermark is self-embedded in the frequency domain.Secondly,by applying the Hilbert transform principle and genetic center law,a complete set of image encryption algorithms is constructed to realize the encryption of image information.Finally,simulation results and security analysis indicate that the scheme can effectively encrypt and decrypt image information and realize the copyright protection of information.The introduced scheme can provide some support for relevant theoretical research,and has practical significance.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 71571091,71771112the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds under Grant PAL-N201801the Excellent Talent Training Project of University of Science and Technology Liaoning under Grant 2019RC05.
文摘With the advent of the information security era,it is necessary to guarantee the privacy,accuracy,and dependable transfer of pictures.This study presents a new approach to the encryption and compression of color images.It is predicated on 2D compressed sensing(CS)and the hyperchaotic system.First,an optimized Arnold scrambling algorithm is applied to the initial color images to ensure strong security.Then,the processed images are con-currently encrypted and compressed using 2D CS.Among them,chaotic sequences replace traditional random measurement matrices to increase the system’s security.Third,the processed images are re-encrypted using a combination of permutation and diffusion algorithms.In addition,the 2D projected gradient with an embedding decryption(2DPG-ED)algorithm is used to reconstruct images.Compared with the traditional reconstruction algorithm,the 2DPG-ED algorithm can improve security and reduce computational complexity.Furthermore,it has better robustness.The experimental outcome and the performance analysis indicate that this algorithm can withstand malicious attacks and prove the method is effective.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.51737003 and 51977060)the Natural Science Foundation of Hebei Province(Grant No.E2011202051).
文摘The neuron model has been widely employed in neural-morphic computing systems and chaotic circuits.This study aims to develop a novel circuit simulation of a three-neuron Hopfield neural network(HNN)with coupled hyperbolic memristors through the modification of a single coupling connection weight.The bistable mode of the hyperbolic memristive HNN(mHNN),characterized by the coexistence of asymmetric chaos and periodic attractors,is effectively demonstrated through the utilization of conventional nonlinear analysis techniques.These techniques include bifurcation diagrams,two-parameter maximum Lyapunov exponent plots,local attractor basins,and phase trajectory diagrams.Moreover,an encryption technique for color images is devised by leveraging the mHNN model and asymmetric structural attractors.This method demonstrates significant benefits in correlation,information entropy,and resistance to differential attacks,providing strong evidence for its effectiveness in encryption.Additionally,an improved modular circuit design method is employed to create the analog equivalent circuit of the memristive HNN.The correctness of the circuit design is confirmed through Multisim simulations,which align with numerical simulations conducted in Matlab.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075241).
文摘Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)the Natural Science Foundation of Liaoning province of China(Grant No.2020-MS-274).
文摘Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.
基金the National Natural Science Foundation of China(No.11803036)Climbing Program of Changchun University(No.ZKP202114).
文摘Multispectral image compression and encryption algorithms commonly suffer from issues such as low compression efficiency,lack of synchronization between the compression and encryption proces-ses,and degradation of intrinsic image structure.A novel approach is proposed to address these is-sues.Firstly,a chaotic sequence is generated using the Lorenz three-dimensional chaotic mapping to initiate the encryption process,which is XORed with each spectral band of the multispectral image to complete the initial encryption of the image.Then,a two-dimensional lifting 9/7 wavelet transform is applied to the processed image.Next,a key-sensitive Arnold scrambling technique is employed on the resulting low-frequency image.It effectively eliminates spatial redundancy in the multispectral image while enhancing the encryption process.To optimize the compression and encryption processes further,fast Tucker decomposition is applied to the wavelet sub-band tensor.It effectively removes both spectral redundancy and residual spatial redundancy in the multispectral image.Finally,the core tensor and pattern matrix obtained from the decomposition are subjected to entropy encoding,and real-time chaotic encryption is implemented during the encoding process,effectively integrating compression and encryption.The results show that the proposed algorithm is suitable for occasions with high requirements for compression and encryption,and it provides valuable insights for the de-velopment of compression and encryption in multispectral field.
基金supported by the Key Research Project of Hainan Province[ZDYF2018129]the Higher Education Research Project of Hainan Province(Hnky2019-73)+3 种基金the National Natural Science Foundation of China[61762033]the Natural Science Foundation of Hainan[617175]the Special Scientific Research Project of Philosophy and Social Sciences of Chongqing Medical University[201703]the Key Research Project of Haikou College of Economics[HJKZ18-01].
文摘In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.
文摘Assuring medical images protection and robustness is a compulsory necessity nowadays.In this paper,a novel technique is proposed that fuses the wavelet-induced multi-resolution decomposition of the Discrete Wavelet Transform(DWT)with the energy compaction of the Discrete Wavelet Transform(DCT).The multi-level Encryption-based Hybrid Fusion Technique(EbhFT)aims to achieve great advances in terms of imperceptibility and security of medical images.A DWT disintegrated sub-band of a cover image is reformed simultaneously using the DCT transform.Afterwards,a 64-bit hex key is employed to encrypt the host image as well as participate in the second key creation process to encode the watermark.Lastly,a PN-sequence key is formed along with a supplementary key in the third layer of the EbHFT.Thus,the watermarked image is generated by enclosing both keys into DWT and DCT coefficients.The fusions ability of the proposed EbHFT technique makes the best use of the distinct privileges of using both DWT and DCT methods.In order to validate the proposed technique,a standard dataset of medical images is used.Simulation results show higher performance of the visual quality(i.e.,57.65)for the watermarked forms of all types of medical images.In addition,EbHFT robustness outperforms an existing scheme tested for the same dataset in terms of Normalized Correlation(NC).Finally,extra protection for digital images from against illegal replicating and unapproved tampering using the proposed technique.
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (Grant No. MMJJ20170203)+3 种基金Liaoning Province Science and Technology Innovation Leading Talents Program Project (Grant No. XLYC1802013)Key R&D Projects of Liaoning Province (Grant No. 2019020105JH2/103)Jinan City ‘20 Universities’ Funding Projects Introducing Innovation Team Program (Grant No. 2019GXRC031)Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (Grant No. MIMS20-M-02)。
文摘A novel visually meaningful image encryption algorithm is proposed based on a hyperchaotic system and compressive sensing(CS), which aims to improve the visual security of steganographic image and decrypted quality. First, a dynamic spiral block scrambling is designed to encrypt the sparse matrix generated by performing discrete wavelet transform(DWT)on the plain image. Then, the encrypted image is compressed and quantified to obtain the noise-like cipher image. Then the cipher image is embedded into the alpha channel of the carrier image in portable network graphics(PNG) format to generate the visually meaningful steganographic image. In our scheme, the hyperchaotic Lorenz system controlled by the hash value of plain image is utilized to construct the scrambling matrix, the measurement matrix and the embedding matrix to achieve higher security. In addition, compared with other existing encryption algorithms, the proposed PNG-based embedding method can blindly extract the cipher image, thus effectively reducing the transmission cost and storage space. Finally, the experimental results indicate that the proposed encryption algorithm has very high visual security.
基金Funds for New Generation Information Technology of the Industry-University-Research Innovation Foundation of China University(No.2020ITA03022).
文摘The generation method of the key stream and the structure of the algorithm determine the security of the cryptosystem.The classical chaotic map has simple dynamic behavior and few control parameters,so it is not suitable for modern cryptography.In this paper,we design a new 2D hyperchaotic system called 2D simple structure and complex dynamic behavior map(2D-SSCDB).The 2D-SSCDB has a simple structure but has complex dynamic behavior.The Lyapunov exponent verifies that the 2D-SSCDB has hyperchaotic behavior,and the parameter space in the hyperchaotic state is extensive and continuous.Trajectory analysis and some randomness tests verify that the 2D-SSCDB can generate random sequences with good performance.Next,to verify the excellent performance of the 2D-SSCDB,we use the 2D-SSCDB to generate a keystream for color image encryption.In the encryption algorithm,the encryption algorithm scrambles and diffuses simultaneously,increasing the cryptographic system’s security.The horizontal correlation,vertical correlation,and diagonal correlation of ciphertext are−0.0004,−0.0004 and 0.0007,respectively.The average information entropy of the ciphertext is 7.9993.In addition,the designed encryption algorithm reduces the correlation between the three channels of the color image.Security analysis shows that the color image encryption algorithm designed using 2DSSCDB has good security,can resist standard attack methods,and has high efficiency.
基金The research is supported by the National Natural Science Foundation of China(61461047,U1536110).
文摘To improve the security and quality of decrypted images,this work proposes a reversible data hiding in encrypted image based on iterative recovery.The encrypted image is firstly generated by the pixel classification scrambling and bit-wise exclusive-OR(XOR),which improves the security of encrypted images.And then,a pixel-typemark generation method based on block-compression is designed to reduce the extra burden of key management and transfer.At last,an iterative recovery strategy is proposed to optimize the marked decrypted image,which allows the original image to be obtained only using the encryption key.The proposed reversible data hiding scheme in encrypted image is not vulnerable to the ciphertext-only attack due to the fact that the XOR-encrypted pixels are scrambled in the corresponding encrypted image.Experimental results demonstrate that the decrypted images obtained by the proposed method are the same as the original ones,and the maximum embedding rate of proposed method is higher than the previously reported reversible data hiding methods in encrypted image.