期刊文献+
共找到289篇文章
< 1 2 15 >
每页显示 20 50 100
Multifaceted roles of lymphatic and blood endothelial cells in the tumor microenvironment of hepatocellular carcinoma:A comprehensive review
1
作者 Jing-Jing Li Jia-Xi Mao +7 位作者 Han-Xiang Zhong Yuan-Yu Zhao Fei Teng Xin-Yi Lu Li-Ye Zhu Yang Gao Hong Fu Wen-Yuan Guo 《World Journal of Hepatology》 2024年第4期537-549,共13页
The tumor microenvironment is a complex network of cells,extracellular matrix,and signaling molecules that plays a critical role in tumor progression and metastasis.Lymphatic and blood vessels are major routes for sol... The tumor microenvironment is a complex network of cells,extracellular matrix,and signaling molecules that plays a critical role in tumor progression and metastasis.Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits.However,recent studies have shown that lymphatic endothelial cells(LECs)and blood endothelial cells(BECs)also play multifaceted roles in the tumor microenvironment beyond their structural functions,particularly in hepatocellular carcinoma(HCC).This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC,including their involvement in angiogenesis,immune modulation,lymphangiogenesis,and metastasis.By providing a detailed account of the complex interplay between LECs,BECs,and tumor cells,this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC. 展开更多
关键词 Lymphatic endothelial cells Blood endothelial cells Hepatocellular carcinoma Tumor microenvironment
下载PDF
Membrane vesicles derived from Streptococcus suis serotype 2 induce cell pyroptosis in endothelial cells via the NLRP3/Caspase-1/GSDMD pathway
2
作者 Keda Shi Yan Li +4 位作者 Minsheng Xu Kunli Zhang Hongchao Gou Chunling Li Shaolun Zhai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1338-1353,共16页
Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different... Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells. 展开更多
关键词 Streptococcus suis serotype 2 membrane vesicles ENDOCYTOSIS PYROPTOSIS NLRP3 inflammasomes mitochondrial damage endothelial cell
下载PDF
Trimethylamine N-oxide aggravates vascular permeability and endothelial cell dysfunction under diabetic condition:in vitro and in vivo study
3
作者 Jia-Yi Jiang Wei-Ming Liu +4 位作者 Qiu-Ping Zhang Hang Ren Qing-Ying Yao Gao-Qin Liu Pei-Rong Lu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第1期25-33,共9页
AIM:To provide the direct evidence for the crucial role of trimethylamine N-oxide(TMAO)in vascular permeability and endothelial cell dysfunction under diabetic condition.METHODS:The role of TMAO on the in vitro biolog... AIM:To provide the direct evidence for the crucial role of trimethylamine N-oxide(TMAO)in vascular permeability and endothelial cell dysfunction under diabetic condition.METHODS:The role of TMAO on the in vitro biological effect of human retinal microvascular endothelial cells(HRMEC)under high glucose conditions was tested by a cell counting kit,wound healing,a transwell and a tube formation assay.The inflammation-related gene expression affected by TMAO was tested by real-time polymerase chain reaction(RT-PCR).The expression of the cell junction was measured by Western blotting(WB)and immunofluorescence staining.In addition,two groups of rat models,diabetic and non-diabetic,were fed with normal or 0.1%TMAO for 16wk,and their plasma levels of TMAO,vascular endothelial growth factor(VEGF),interleukin(IL)-6 and tumor necrosis factor(TNF)-αwere tested.The vascular permeability of rat retinas was measured using FITC-Dextran,and the expression of zonula occludens(ZO)-1 and claudin-5 in rat retinas was detected by WB or immunofluorescence staining.RESULTS:TMAO administration significantly increased the cell proliferation,migration,and tube formation of primary HRMEC either in normal or high-glucose conditions.RT-PCR showed elevated inflammation-related gene expression of HRMEC under TMAO stimulation,while WB or immunofluorescence staining indicated decreased cell junction ZO-1 and occludin expression after high-glucose and TMAO treatment.Diabetic rats showed higher plasma levels of TMAO as well as retinal vascular leakage,which were even higher in TMAO-feeding diabetic rats.Furthermore,TMAO administration increased the rat plasma levels of VEGF,IL-6 and TNF-αwhile decreasing the retinal expression levels of ZO-1 and claudin-5.CONCLUSION:TMAO enhances the proliferation,migration,and tube formation of HRMEC,as well as destroys their vascular integrity and tight connection.It also regulates the expression of VEGF,IL-6,and TNF-α. 展开更多
关键词 diabetic model trimethylamine N-oxide INFLAMMATION endothelial dysfunction RATS retinal microvascular endothelial cells
原文传递
Analyzing the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells
4
作者 Rui-Xue Chen Jing Li +3 位作者 Guo-Zhen Dong Sheng-Yan Qiao Xiao Hu Li-Guo Chen 《Clinical Research Communications》 2024年第1期3-10,共8页
Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substa... Background:Xuefu Zhuyu decoction(XFZY)could significantly improve the function of hypertensive vascular endothelial cells,but the targets and mechanism are not clear.This study is to analyze the pharmacological substances and targets of Xuefu Zhuyu decoction in hypertensive vascular endothelial cells.Methods:This study used Xuefu Zhuyu decoction to intervene human umbilical vein endothelial cells incubated by hypertensive patients’serum,then detected the function of vascular endothelial cells.The aqueous extract of XFZY was analyzed and validated by liquid chromatography-mass spectrometry technology;Finally,macromolecular docking technology was used to analyze the potential active substances and targets of XFZY in the prevention and treatment of hypertension.Results:Compared with the model group,the XFZY group showed a significant increase in NO expression(P<0.01)and a significant decrease in ET-1 expression(P<0.001);and the expression of BIP,P-JNK,CHOP,and BAX in XFZY group cells was significantly decreased(P<0.001),while the expression of JNK and BCL2 was significantly increased(P<0.001).19 main compounds were identified in XFZY and there were 3 pairs of molecular complexes with high affinity for markers of the endoplasmic reticulum stress,including BIP-Hesperidin complex,BIP-HSYA complex and JNK-Naringin complex.Conclusion:This study analyzed the potential pharmacodynamic substance and targets of Xuefu Zhuyu decoction in improving the function of hypertensive vascular endothelial cells,which could provide a scientific basis for the future molecular mechanism of XFZY in treating hypertension. 展开更多
关键词 Xuefu Zhuyu decoction HYPERTENSION vascular endothelial cells pharmacological substances and targets
下载PDF
Integrin binding peptides facilitate growth and interconnected vascular-like network formation of rat primary cortical vascular endothelial cells in vitro
5
作者 Ram Kuwar Xuejun Wen +1 位作者 Ning Zhang Dong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1052-1056,共5页
Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating im... Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2′-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional(3 D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3 D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3 D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3 D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3 D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults. 展开更多
关键词 3D culture angiogenesis brain microvascular endothelial cells hydrogel INTEGRINS platelet endothelial cell adhesion molecule(PECAM-1) vascular endothelial growth factor(VEGF) VASCULARIZATION
下载PDF
β-Estradiol 17-acetate enhances the in vitro vitality of endothelial cells isolated from the brain of patients subjected to neurosurgery 被引量:1
6
作者 Sonia Guzzo Pasquale De Bonis +1 位作者 Barbara Pavan Luciano Fadiga 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期389-395,共7页
In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier,our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance thro... In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier,our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance through an innovative biomimetic coating technology for brain chronic implants.We hypothesized that the autologous origin of human brain mic rovascular endothelial cells(hBMECs)is the first requirement for the suitable coating to prevent the glial inflammato ry response trigge red by foreign neuroprosthetics.Therefo re,this study established a new procedure to preserve the in vitro viability of hBMECs isolated from gray and white matter specimens taken from neurosurge ry patients.Culturing adult hBMECs is generally considered a challenging task due to the difficult survival ex vivo and progressive reduction in proliferation of these cells.The addition of 10 nMβ-estradiol 17-acetate to the hBMEC culture medium was found to be an essential and discriminating factor promoting adhesion and proliferation both after isolation and thawing,suppo rting the well-known protective role played by estrogens on microvessels.In particular,β-estradiol 17-acetate was critical for both freshly isolated and thawed female-derived hBMECs,while it was not necessary for freshly isolated male-derived hBMECs;however,it did countera ct the decay in the viability of the latter after thawing.The tumo r-free hBMECs were thus cultured for up to 2 months and their growth efficiency was assessed befo re and after two periods of cryopreservation.Des pite the thermal stress,the hBMECs remained viable and suitable for re-freezing and storage for several months.This approach increasing in vitro viability of hBMECs opens new perspectives for the use of cryopreserved autologous hBMECs as biomimetic therapeutic tools,offering the potential to avoid additional surgical sampling for each patient. 展开更多
关键词 β-estradiol 17-acetate 17Β-ESTRADIOL CRYOPRESERVATION GENDER-SPECIFIC gray matter human brain microvascular endothelial cells surgical resections vascular protection white matter
下载PDF
Role of apigenin in high glucose-induced retinal microvascular endothelial cell dysfunction via regulating NOX4/p38 MAPK pathway in vitro 被引量:1
7
作者 Li-Li Liu Zhi-Yi Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第4期514-522,共9页
AIM:To investigate the retinoprotective role of Apigenin(Api)against high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs),and to explore its regulatory mechanism.METHODS:HRMECs were stimulate... AIM:To investigate the retinoprotective role of Apigenin(Api)against high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs),and to explore its regulatory mechanism.METHODS:HRMECs were stimulated by HG for 48h to establish the in vitro cell model.Different concentrations of Api(2.5,5,and 10μmol/L)were applied for treatment.Cell counting kit-8(CCK-8),Transwell,and tube formation assays were performed to examine the effects of Api on the viability,migration,and angiogenesis in HG-induced HRMECs.Vascular permeability was evaluated by Evans blue dye.The inflammatory cytokines and oxidative stress-related factors were measured using their commercial kits.Protein expression of nicotinamide adenine dinucleotide phosphate(NADPH)oxidase 4(NOX4)and p38 mitogen-activated protein kinase(MAPK)was measured by Western blot.RESULTS:Api prevented HG-induced HRMECs viability,migration,angiogenesis,and vascular permeability in a concentration-dependent manner.Meanwhile,Api also concentration-dependently inhibited inflammation and oxidative stress in HRMECs exposed to HG.In addition,HG caused an elevated expression of NOX4,which was retarded by Api treatment.HG stimulation facilitated the activation of p38 MAPK signaling in HRMECs,and Api could weaken this activation partly via downregulating NOX4 expression.Furthermore,overexpression of NOX4 or activation of p38 MAPK signaling greatly weakened the protective role of Api against HG-stimulated HRMECs.CONCLUSION:Api might exert a beneficial role in HGstimulated HRMECs through regulating NOX4/p38 MAPK pathway. 展开更多
关键词 APIGENIN retinal microvascular endothelial cell GLUCOSE NOX4 p38 MAPK
原文传递
Thinking outside the black box:are the brain endothelial cells the new main target in Alzheimer's disease?
8
作者 Enrique Estudillo Adolfo López-Ornelas +3 位作者 Alejandro Rodríguez-Oviedo Neptali Gutiérrez de la Cruz Marco Antonio Vargas-Hernández Adriana Jiménez 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2592-2598,共7页
The blood-brain barrier is the interface through which the brain interacts with the milieu and consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels and selectively moves molec... The blood-brain barrier is the interface through which the brain interacts with the milieu and consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels and selectively moves molecules inside and outside the brain through multiple mechanisms of transport.Although brain endothelial cell function is crucial for brain homeostasis,their role in neurodegenerative diseases has historically not been considered with the same importance as other brain cells such as microglia,astroglia,neurons,or even molecules such as amyloid beta,Tau,or alpha-synuclein.Alzheimer's disease is the most common neurodegenerative disease,and brain endothelial cell dysfunction has been reported by several groups.However,its impairment has barely been considered as a potential therapeutic target.Here we review the most recent advances in the relationship between Alzheimer's disease and brain endothelial cells commitment and analyze the possible mechanisms through which their alterations contribute to this neurodegenerative disease,highlighting their inflammatory phenotype and the possibility of an impaired secretory pattern of brain endothelial cells that could contribute to the progression of this ailment.Finally,we discuss why shall brain endothelial cells be appreciated as a therapeutic target instead of solely an obstacle for delivering treatments to the injured brain in Alzheimer's disease. 展开更多
关键词 DEMENTIA endothelial cells NEURODEGENERATION NEUROINFLAMMATION neuronal death paracellular transport transcellular transport
下载PDF
Ferroptosis inhibition protects vascular endothelial cells and maintains integrity of the blood-spinal cord barrier after spinal cord injury
9
作者 Wenxiang Li Xiaoqing Zhao +12 位作者 Rong Zhang Xinjie Liu Zhangyang Qi Yang Zhang Weiqi Yang Yilin Pang Chenxi Zhao Baoyou Fan Ning Ran Jiawei Zhang Xiaohong Kong Shiqing Feng Xue Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2474-2481,共8页
Maintaining the integrity of the blood-spinal cord barrier is critical for the recove ry of spinal cord injury.Ferro ptosis contributes to the pathogenesis of spinal cord injury.We hypothesized that ferroptosis is inv... Maintaining the integrity of the blood-spinal cord barrier is critical for the recove ry of spinal cord injury.Ferro ptosis contributes to the pathogenesis of spinal cord injury.We hypothesized that ferroptosis is involved in disruption of the blood-s pinal cord barrier.In this study,we administe red the ferroptosis inhibitor liproxstatin-1 intraperitoneally after contusive spinal co rd injury in rats.Liproxstatin-1 improved locomotor recovery and somatosensory evoked potential electrophysiological performance after spinal cord inju ry.Liproxstatin-1 maintained blood-spinal cord barrier integrity by upregulation of the expression of tight junction protein.Liproxstatin-1 inhibited ferroptosis of endothelial cell after spinal cord injury,as shown by the immunofluorescence of an endothelial cell marker(rat endothelium cell antigen-1,RECA-1) and fe rroptosis markers Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase.Liproxstatin-1reduced brain endothelial cell ferroptosis in vitro by upregulating glutathione peroxidase 4 and downregulating Acyl-CoA synthetase long-chain family member4 and 15-lipoxygenase.Furthermore,inflammatory cell recruitment and astrogliosis were mitigated after liproxstatin-1 treatment.In summary,liproxstatin-1im proved spinal cord injury recovery by inhibiting ferroptosis in endothelial cells and maintaining blood-s pinal co rd barrier integrity. 展开更多
关键词 blood-spinal cord barrier ferroptosis liproxstatin-1 NEUROINFLAMMATION spinal cord injury vascular endothelial cells
下载PDF
Overexpression of mitogen-activated protein kinase phosphatase-1 in endothelial cells reduces blood-brain barrier injury in a mouse model of ischemic stroke
10
作者 Xiu-De Qin Tai-Qin Yang +6 位作者 Jing-Hui Zeng Hao-Bin Cai Shao-Hua Qi Jian-Jun Jiang Ying Cheng Long-Sheng Xu Fan Bu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1743-1749,共7页
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le... Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis. 展开更多
关键词 blood-brain barrier brain injury cerebral ischemia endothelial cells extracellular signal-regulated kinase 1/2 functional recovery mitogenactivated protein kinase phosphatase 1 OCCLUDIN oxygen and glucose deprivation transient middle cerebral artery occlusion
下载PDF
Exploring the mechanism of icariin in regulat⁃ing cardiac microvascular endothelial cells based on network pharmacology,molecular docking and in vitro experiments
11
作者 CAO Ce LI Li +2 位作者 WANG Ziyan LI Haoran LIU Jianxun 《中国药理学与毒理学杂志》 CAS 北大核心 2023年第S01期25-26,共2页
OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment t... OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment to construct a myocardial ischemiareperfusion model,and were divided into normal,model,low(10μmol·L^(-1)),medium(20μmol·L^(-1))and high(40μmol·L^(-1))ICA group,and high ICA+inhibitor group(40μmol·L^(-1)+20 nmol·L^(-1)).CCK-8 assay was used to assess the protective ability of ICA against CMEC,and cell migration assay and tube-formation assay were used to detect the migration and generation ability of CMEC.The TCMSP database,Swiss-Target database and literature mining methods were used to col⁃lect ICA-related targets,the GeneCards data⁃base was used to collect target genes related to myocardial ischemia/reperfusion,and Cytoscape 3.8.0 software was used to construct a"drug-tar⁃get-disease"network.The potential targets were imported into STRING 11.5 database to obtain the PPI network.GO and KEGG enrichment analyses were performed on the potential targets using the DAVID database.Molecular docking was performed using AutoDock-vina 1.1.2 soft⁃ware.Western blot detected the expression of related proteins.RESULTS After CMEC was subjected to OGD/R treatment,ICA had a protec⁃tive effect at 10^(-1)60μmol·L^(-1);the results of the cell migration assay showed that each group of ICA could promote the migratory effect of CMEC(P<0.01,P<0.01);and the results of tube-for⁃mation assay showed that each group of ICA could significantly promote the generation of branches(P<0.01)and the capillary length exten⁃sion(P<0.05).Network pharmacology collected a total of 23 ICA action targets,1500 disease tar⁃gets and 12 key targets.GO function enrichment analysis found 85 results.KEGG pathway enrich⁃ment analysis found 53 results,involving AGERAGE signaling pathway,sphingolipid signaling pathway and VEGF signaling pathway.Molecu⁃lar docking results showed that ICA had better binding with core targets PRKCB,PRKCA and PTGS2.Western blot results showed that ICA could regulate the expression of PRKCB,PRKCA and PTGS2 proteins.The results of cell migra⁃tion assay,tube-formation assay and protein expression were reversed after addition of PKC inhibitor.CONCLUSION The potential mecha⁃nism of action of ICA against myocardial isch⁃emia-reperfusion injury may be related to the reg⁃ulation of processes such as CMEC migration and angiogenesis,and it functions through the key target gene PKC. 展开更多
关键词 ICARIIN myocardial ischemia-reperfusion injury cardiac microvascular endothelial cells network pharmacology molecular docking
下载PDF
The role of liver sinusoidal endothelial cells in liver remodeling after injury
12
作者 Zhi-Wen Li Lin Wang 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2023年第1期22-27,共6页
Liver transplantation is the optimal treatment for patients with end-stage liver disease,metabolic liver diseases,and hepatic malignancies that are not amenable to resection.Hepatic ischemia-reperfusion injury(IRI)is ... Liver transplantation is the optimal treatment for patients with end-stage liver disease,metabolic liver diseases,and hepatic malignancies that are not amenable to resection.Hepatic ischemia-reperfusion injury(IRI)is the main problem in liver transplantation and liver resection,leading to parenchymal cell injury and organ dysfunction.The damage of liver sinusoidal endothelial cells(LSECs)is a critical event in IRI.LSECs work as an important regulating factor of liver regeneration after partial hepatectomy.This review primarily describes the mechanisms of LSECs injury in IRI and explores the roles of LSECs in liver regeneration,and briefly introduces the protective strategies targeting LSECs damaged in IRI. 展开更多
关键词 Liver sinusoidal endothelial cells Liver transplantation Ischemia-reperfusion injury Liver regeneration
下载PDF
Destructive effects on endothelial cells of grafts in cytomegalovirus DNA-positive patients after keratoplasty
13
作者 Yun-Xiao Zang Rong-Mei Peng +6 位作者 Han-Zhi Ben Jing-Hao Qu Ge-Ge Xiao Li-Xue Shuai Pei Zhang Li-Na Feng Jing Hong 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第1期53-59,共7页
AIM:To investigate corneal graft survival rate and endothelial cell density(ECD)loss after keratoplasty in cytomegalovirus(CMV)positive patients.METHODS:This was a retrospective cohort study.We analyzed the clinical d... AIM:To investigate corneal graft survival rate and endothelial cell density(ECD)loss after keratoplasty in cytomegalovirus(CMV)positive patients.METHODS:This was a retrospective cohort study.We analyzed the clinical data of patients who underwent viral DNA detection in aqueous humor/corneal tissue collected during keratoplasty from March 2015 to December 2018 at the Peking University Third Hospital,Beijing,China.To further evaluate the effect of CMV on graft survival rate and ECD loss,patients were divided into three groups:1)CMV DNA positive(CMV+)group;2)viral DNA negative(virus-)group,comprising virus-group eyes pairwise matched to eyes in the CMV+group according to ocular comorbidities;3)control group,comprising virus-group eyes without ocular comorbidities.The follow-up indicators including graft survival rate,ECD,ECD loss,and central corneal thickness(CCT),were analyzed by Tukey honestly significant difference(HSD)test.RESULTS:Each group included 29 cases.The graft survival rate in CMV+group were lowest among the three groups(P=0.000).No significant difference in donor graft ECD was found among three groups(P=0.54).ECD in the CMV+group was lower than the virus-group at 12(P=0.009),and 24mo(P=0.002)after keratoplasties.Furthermore,ECD loss was higher in the CMV+group than in the virus-group in the middle stage(6-12mo)postkeratoplasty(P=0.017),and significantly higher in the early stage(0-6mo)in the virus-group than in the control group(P=0.000).CONCLUSION:CMV reduces the graft survival rate and exerts persistent detrimental effects on the ECD after keratoplasty.The graft ECD loss associate with CMV infection mainly occurrs in the middle stage(6-12mo postoperatively),while ocular comorbidities mainly affects ECD in the early stage(0-6mo postoperatively). 展开更多
关键词 KERATOPLASTY CYTOMEGALOVIRUS ocular comorbidities endothelial cell density central corneal thickness
原文传递
Corneal endothelial cells and acoustic cavitation in phacoemulsification
14
作者 Kai Chen Wen-Ya Xu +1 位作者 Si-Si Sun Hong-Wei Zhou 《World Journal of Clinical Cases》 SCIE 2023年第8期1712-1718,共7页
Postoperative complications of phacoemulsification,such as corneal edema caused by human corneal endothelial cell(CEC)injury,are still a matter of concern.Although several factors are known to cause CEC damage,the inf... Postoperative complications of phacoemulsification,such as corneal edema caused by human corneal endothelial cell(CEC)injury,are still a matter of concern.Although several factors are known to cause CEC damage,the influence of ultrasound on the formation of free radicals during surgery should be considered.Ultrasound in aqueous humor induces cavitation and promotes the formation of hydroxyl radicals or reactive oxygen species(ROS).ROS-induced apoptosis and autophagy in phacoemulsification have been suggested to significantly promote CEC injury.CEC cannot regenerate after injury,and measures must be taken to prevent the loss of CEC after phacoemulsification or other CEC injuries.Antioxidants can reduce the oxidative stress injury of CEC during phacoemulsification.Evidence from rabbit eye studies shows that ascorbic acid infusion during operation or local application of ascorbic acid during phacoemulsification has a protective effect by scavenging free radicals or reducing oxidative stress.Both in experiments and clinical practice,hydrogen dissolved in the irrigating solution can also prevent CEC damage during phacoemulsification surgery.Astaxanthin(AST)can inhibit oxidative damage,thereby protecting different cells from most pathological conditions,such as myocardial cells,luteinized granulosa cells of the ovary,umbilical vascular endothelial cells,and human retina pigment epithelium cell line(ARPE-19).However,existing research has not focused on the application of AST to prevent oxidative stress during phacoemulsification,and the related mechanisms need to be studied.The Rho related helical coil kinase inhibitor Y-27632 can inhibit CEC apoptosis after phacoemulsification.Rigorous experiments are required to confirm whether its effect is realized through improving the ROS clearance ability of CEC. 展开更多
关键词 CATARACT PHACOEMULSIFICATION Corneal endothelial cells ULTRASOUND Acoustic cavitation Oxidative stress ANTIOXIDANT
下载PDF
Anisodine hydrobromide alleviates oxidative stress caused by hypoxia/reoxygenation in human cerebral microvascular endothelial cells predominantly via inhibition of muscarinic acetylcholine receptor 4
15
作者 WENLI JIANG JUNYI SHEN +5 位作者 XIAOQIANG DU YAN QIU JIAN ZHONG ZHI OUYANG BINGMEI M.FU YE ZENG 《BIOCELL》 SCIE 2023年第10期2255-2263,共9页
Background:Anisodine hydrobromide(AT3),an anti-cholinergic agent,could be delivered to the brain across the blood-brain barrier and has been used clinically for the treatment of cerebral ischemia/reperfusion injury.En... Background:Anisodine hydrobromide(AT3),an anti-cholinergic agent,could be delivered to the brain across the blood-brain barrier and has been used clinically for the treatment of cerebral ischemia/reperfusion injury.Endothelial dysfunction can be caused by hypoxia/reoxygenation(H/R)via oxidative stress and metabolic alterations.The present study investigated whether AT3 regulates the production of nitric oxide(NO)and reactive oxygen species(ROS),and the HIF-1αpathway via regulation of muscarinic acetylcholine receptors(mAChRs)in brain microvascular endothelial cells after H/R exposure.Methods:Under H/R conditions,hCMEC/D3 cerebral microvascular endothelial cells were treated with AT3.Specific inhibitors of M2-and M4-mAChRs were used to explore the mechanism by which AT3 influences oxidative stress in endothelial cells.Then,mAChRs expression was detected by western blotting and NO production was detected by Greiss reaction.The intracellular ROS level was measured using DCFH-DA probes.The expression of hypoxia-inducible transcription factor 1α(HIF-1α)was also detected.Results:While H/R induced the expression of M2-and M4-mAChRs,AT3 suppressed the H/R-upregulated M2-and M4-mAChRs.H/R also induced the production of NO,ROS,and apoptosis.AT3 and M4-mAChR inhibitors inhibited the H/R-induced production of NO and ROS and apoptosis.HIF-1αwas induced by H/R,but was suppressed by AT3.Conclusion:Thus,the in vitro evidence shows that AT3 protects against H/R injury in cerebral microvascular endothelial cells via inhibition of HIF-1α,NO and ROS,predominantly through the downregulation of M4-mAChR.The findings offer novel understandings regarding AT3-mediated attenuation of endothelial cell apoptosis and cerebral ischemia/reperfusion injury. 展开更多
关键词 HYPOXIA/REOXYGENATION endothelial cell Anisodine hydrobromide Muscarinic acetylcholine receptors Hypoxia-inducible factor-1α
下载PDF
Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells
16
作者 JING LI WANWAN FAN +5 位作者 LILI HAO YONGSHENG LI GUOCHENG YU WEI SUN XIANQIONG LUO JINGXIANG ZHONG 《BIOCELL》 SCIE 2023年第11期2485-2494,共10页
Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of v... Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A(VEGF-A)in immature human fetal retinal microvascular endothelial cells(hfRMECs).Methods:Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques,including transmission electron microscopy,nanoparticle tracking analysis,bicinchoninic acid assays,and western blotting.The hfRMECs were identified using von Willebrand factor(vWF)co-staining and divided into four groups:a control group cultured under normoxic condition,a hypoxic model group,a hypoxic group treated with low-concentration hucMSC-Exos(75μg/mL)and a hypoxic group treated with high-concentration hucMSC-Exos(100μg/mL).Cell viability and proliferation were assessed using Cell Counting Kit-8(CCK-8)assay and EdU(5-ethynyl-2′-deoxyuridine)assay respectively.Expression levels of VEGF-A were evaluated using RT-PCR,western blotting and immunofluorescence.Results:Hypoxia significantly increased hfRMECs’viability and proliferation by upregulating VEGF-A levels.The administration of hucMSC-Exos effectively reversed this response,with the high-concentration group exhibiting greater efficacy compared to the lowconcentration group.Conclusion:In conclusion,hucMSC-Exos can dose-dependently inhibit hypoxia-induced hyperproliferation and VEGF-A overexpression in immature fetal retinal microvascular endothelial cells. 展开更多
关键词 Mesenchymal stem cells EXOSOMES Immature fetal retinal vascular endothelial cells Vascular endothelial growth factor A HYPOXIA
下载PDF
Down-regulation of histone deacetylase 7 reduces biological activities of retinal microvascular endothelial cells under high glucose condition and related mechanism
17
作者 Jia-Yi Ning Han-Yi Yang +2 位作者 Ting-Ke Xie Yi-Xuan Chen Jing Han 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第8期1210-1217,共8页
AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the... AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the retinal tissue in diabetic rats.METHODS:The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot.LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities.Cell count kit-8(CCK-8),5-ethynyl2’-deoxyuridine(EdU),flow cytometry,scratch test,Transwell test and tube formation assay were used to examine the ability of cell proliferation,migration,and angiogenesis.Finally,a preliminary exploration of its mechanism was performed by Western blot.RESULTS:The expression of HDAC7 was both upregulated in retinal tissues of diabetic rats and high glucosetreated HRMECs.Down-regulation of HDAC7 expression significantly reduced the ability of proliferation,migration,and tube formation,and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs.CONCLUSION:High glucose can up-regulate the expression of HDAC7 in HRMECs.Down-regulation of HDAC7 can inhibit HRMECs activities.HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target. 展开更多
关键词 human retinal microvascular endothelial cells histone deacetylase 7 high glucose diabetic rat vascular endothelial growth factor
原文传递
The relationship between amyloid-beta and brain capillary endothelial cells in Alzheimer's disease 被引量:9
18
作者 Yan-Li Zhang Juan Wang +2 位作者 Zhi-Na Zhang Qiang Su Jun-Hong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第11期2355-2363,共9页
Neurovascular dysfunction,as an integral part of Alzheimer's disease,may have an important influence on the onset and progression of chronic neurodegenerative processes.The bloodbrain barrier(BBB)pathway is one of... Neurovascular dysfunction,as an integral part of Alzheimer's disease,may have an important influence on the onset and progression of chronic neurodegenerative processes.The bloodbrain barrier(BBB)pathway is one of the main pathways that mediates the clearance of amyloidbeta(Aβ)in the brain parenchyma.A large number of studies have shown that receptors and ATPbinding cassette transporte rs expressed on endothelial cells play an important role in Aβtransport across the BBB,but the specific mechanism is not clear.In this review,we summarize the possible mechanisms of Aβproduction and clearance,and in particular the relationship between Aβand brain capillary endothelial cells.Aβis produced by abnormal cleavage of the amyloid precursor protein via amyloidogenic processing under pathological conditions.Dys regulation of Aβclearance is considered to be the main reason for the massive accumulation of Aβin the brain parenchyma.Several pathways mediating Aβclearance from the brain into the periphery have been identified,including the BBB pathway,the blood-cerebros pinal fluid barrier and arachnoid granule pathway,and the lymphoidrelated pathway.Brain ca pilla ry endothelial cells are the key components of Aβclearance mediated by BBB.Receptors(such as LRP1,RAGE,and FcRn)and ATP-binding cassette transporters(such as P-gp,ABCA1,and ABCC1)expressed on endothelial cells play a critical role in Aβtranscytosis across the BBB.The toxic effects of Aβcan induce dysregulation of receptor and transpo rter expression on endothelial cells.Excessive Aβexerts potent detrimental cerebrovascular effects by promoting oxidative stress,inducing chronic inflammation,and impairing endothelial structure and functions.All of these are main causes for the reduction in Aβclearance across the BBB and the accumulation of Aβin the brain parenchyma.Therefo re,studies on the intera ctions between Aβand brain capillary endothelial cells,including their receptors and transporters,studies on inhibition of the toxic effects of Aβon endothelial cells,and studies on promoting the ability of endothelial cells to mediate Aβclearance may provide new therapeutic strategies for Aβclearance in Alzheimer's disease. 展开更多
关键词 Alzheimer's disease amyloid beta Aβclearance blood-brain barrier cerebral amyloid angiopathy DEMENTIA endothelial cells oxidative stress review THERAPEUTICS TRANSCYTOSIS
下载PDF
Exercise promotes angiogenesis by enhancing endothelial cell fatty acid utilization via liver-derived extracellular vesicle miR-122-5p 被引量:4
19
作者 Jing Lou Jie Wu +11 位作者 Mengya Feng Xue Dang Guiling Wu Hongyan Yang Yan Wang Jia Li Yong Zhao Changhong Shi Jiankang Liu Lin Zhao Xing Zhang Feng Gao 《Journal of Sport and Health Science》 SCIE 2022年第4期495-508,共14页
Background:Angiogenesis constitutes a major mechanism responsible for exercise-induced beneficial effects.Our previous study identified a cluster of differentially expressed extracellular vesicle microRNAs(miRNAs)afte... Background:Angiogenesis constitutes a major mechanism responsible for exercise-induced beneficial effects.Our previous study identified a cluster of differentially expressed extracellular vesicle microRNAs(miRNAs)after exercise and found that some of them act as exerkines.However,whether these extracellular vesicle miRNAs mediate the exercise-induced angiogenesis remains unknown.Methods:A 9-day treadmill training was used as an exercise model in C57BL/6 mice.Liver-specific adeno-associated virus 8 was used to knock down microRNA-122-5p(miR-122-5p).Human umbilical vein endothelial cells were used in vitro.Results:Among these differentially expressed extracellular vesicle miRNAs,miR-122-5p was identified as a potent pro-angiogenic factor that activated vascular endothelial growth factor signaling and promoted angiogenesis both in vivo and in vitro.Exercise increased circulating levels of miR-122-5p,which was produced mainly by the liver and shuttled by extracellular vesicles in mice.Inhibition of circulating miR-122-5p or liver-specific knockdown of miR-122-5p significantly abolished the exercise-induced pro-angiogenic effect in skeletal muscles,and exerciseimproved muscle performance in mice.Mechanistically,miR-122-5p promoted angiogenesis through shifting substrate preference to fatty acids in endothelial cells,and miR-122-5p upregulated endothelial cell fatty-acid utilization by targeting 1-acyl-sn-glycerol-3-phosphate acyltransferase(AGPAT1).In addition,miR-122-5p increased capillary density in perilesional skin tissues and accelerated wound healing in mice.Conclusion:These findings demonstrated that exercise promotes angiogenesis through upregulation of liver-derived extracellular vesicle miR-122-5p,which enhances fatty acid utilization by targeting AGPAT1 in endothelial cells,highlighting the therapeutic potential of miR-122-5p in tissue repair. 展开更多
关键词 ANGIOGENESIS endothelial cells Exerkine Extracellular vesicle Metabolic shift
下载PDF
Alleviation of acute pancreatitis-associated lung injury by inhibiting the p38 mitogen-activated protein kinase pathway in pulmonary microvascular endothelial cells 被引量:4
20
作者 Xiao-Xin Zhang Hao-Yang Wang +8 位作者 Xue-Fei Yang Zi-Qi Lin Na Shi Chan-Juan Chen Lin-Bo Yao Xin-Min Yang Jia Guo Qing Xia Ping Xue 《World Journal of Gastroenterology》 SCIE CAS 2021年第18期2141-2159,共19页
BACKGROUND Previous reports have suggested that the p38 mitogen-activated protein kinase signaling pathway is involved in the development of severe acute pancreatitis(SAP)-related acute lung injury(ALI).Inhibition of ... BACKGROUND Previous reports have suggested that the p38 mitogen-activated protein kinase signaling pathway is involved in the development of severe acute pancreatitis(SAP)-related acute lung injury(ALI).Inhibition of p38 by SB203580 blocked the inflammatory responses in SAP-ALI.However,the precise mechanism associated with p38 is unclear,particularly in pulmonary microvascular endothelial cell(PMVEC)injury.AIM To determine its role in the tumor necrosis factor-alpha(TNF-α)-induced inflammation and apoptosis of PMVECs in vitro.We then conducted in vivo experiments to confirm the effect of SB203580-mediated p38 inhibition on SAP-ALI.METHODS In vitro,PMVEC were transfected with mitogen-activated protein kinase kinase 6(Glu),which constitutively activates p38,and then stimulated with TNF-α.Flow cytometry and western blotting were performed to detect the cell apoptosis and inflammatory cytokine levels,respectively.In vivo,SAP-ALI was induced by 5%sodium taurocholate and three different doses of SB203580(2.5,5.0 or 10.0 mg/kg)were intraperitoneally injected prior to SAP induction.SAP-ALI was assessed by performing pulmonary histopathology assays,measuring myeloperoxidase activity,conducting arterial blood gas analyses and measuring TNF-α,interleukin(IL)-1βand IL-6 levels.Lung microvascular permeability was measured by determining bronchoalveolar lavage fluid protein concentration,Evans blue pulmonary cells was confirmed by performing a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling analysis and examining the Bcl2,Bax,Bim and cle-caspase3 levels.The proteins levels of P-p38,NFκB,IκB,P-signal transducer and activator of transcription-3,nuclear factor erythroid 2-related factor 2,HO-1 and Myd88 were detected in the lungs to further evaluate the potential mechanism underlying the protective effect of SB203580.RESULTS In vitro,mitogen-activated protein kinase(Glu)transfection resulted in higher apoptotic rates and cytokine(IL-1βand IL-6)levels in TNF-α-treated PMVECs.In vivo,SB2035080 attenuated lung histopathological injury,decreased inflammatory activity(TNF-α,IL-1β,IL-6 and myeloperoxidase)and preserved pulmonary function.Furthermore,SB203580 significantly reversed changes in the bronchoalveolar lavage fluid protein concentration,Evans blue accumulation,terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cell numbers,apoptosis-related proteins(cle-caspase3,Bim and Bax)and endothelial microstructure.Moreover,SB203580 significantly reduced the pulmonary P-p38,NFκB,P-signal transducer and activator of transcription-3 and Myd88 levels but increased the IκB and HO-1 levels.CONCLUSION p38 inhibition may protect against SAP-ALI by alleviating inflammation and the apoptotic death of PMVECs. 展开更多
关键词 Acute pancreatitis Acute lung injury Pulmonary microvascular endothelial cells P38 SB203580 Apoptosis
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部