Kinetic energy(KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE fu...Kinetic energy(KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE functional estimator for a one-dimensional (1D) extended system using a machine learning method. Our end-to-end solution combines the dimensionality reduction method with the Gaussian process regression, and simple scaling method to adapt to various 1D lattices. In addition to reaching chemical accuracy in KE calculation, our estimator also performs well on KE functional derivative prediction. Integrating this machine learning KE functional into the current orbital free density functional theory scheme is able to provide us with expected ground state electron density.展开更多
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic...The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.展开更多
Precise knowledge of the nuclear symmetry energy can be tentatively calibrated using multimessenger constraints.The neutron skin thickness of a heavy nucleus is one of the most sensitive indicators for probing the iso...Precise knowledge of the nuclear symmetry energy can be tentatively calibrated using multimessenger constraints.The neutron skin thickness of a heavy nucleus is one of the most sensitive indicators for probing the isovector components of effective interactions in asymmetric nuclear matter.Recent studies have suggested that the experimental data from the CREX and PREX2 collaborations are not mutually compatible with existing nuclear models.In this study,we review the quantification of the slope parameter of the symmetry energy L from the neutron skin thicknesses of^(48)Ca and^(208)Pb.Skyrme energy density functionals classified by various isoscalar incompressibility coefficients K were employed to evaluate the bulk properties of finite nuclei.The calculated results suggest that the slope parameter L deduced from^(208)Pb is sensitive to the compression modulus of symmetric nuclear matter,but not that from^(48)Ca.The effective parameter sets classified by K=220 MeV can provide an almost overlapping range of L from^(48)Ca and^(208)Pb.展开更多
The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and...The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.展开更多
The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections ...The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections δ c for the 0+ → 0+ superallowed Fermi transitions.With these δ c values,together with the available experimental f t values and the improved radiative corrections,the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined.Even with the consideration of uncertainty,the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.展开更多
The author investigates the relationships of some potential objects for a right Markov process and the same objects for the Girsanov transformed process induced byα-excessive function including Revuz measures, energy...The author investigates the relationships of some potential objects for a right Markov process and the same objects for the Girsanov transformed process induced byα-excessive function including Revuz measures, energy functionals, capacities and Lévy systems in this paper.展开更多
A formula for energy functionals of a Markov process and its subprocess will be given in this paper. This generalizes a formula in [1]. We also use this formula to get some important consequences.
In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ...In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.展开更多
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc...The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.展开更多
Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of ...The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.展开更多
In this study,we calculated the inclusive charged-current neutrino-nucleus scattering from ^(40)Ar in the quasielastic region.To explore the effect of uncertainties stemming from the nuclear structure,we used the KIDS...In this study,we calculated the inclusive charged-current neutrino-nucleus scattering from ^(40)Ar in the quasielastic region.To explore the effect of uncertainties stemming from the nuclear structure,we used the KIDS(Korea-IBS-Daegu-SKKU)nuclear energy density functional and Skyrme force models,namely SLy4,SkI3,and MSk7.These models were selected to have distinct behavior in terms of the density dependence of the symmetry energy and the effective mass of the nucleon.In the charged-current neutrino scattering,the single-and double-differential cross sections were calculated for various kinematics.Total cross sections are reported as a function of the incident neutrino energy.The theoretical cross sections were compared with experimental data,and the roles of the effective mass and symmetry energy were investigated in terms of charged-current neutrino-nucleus scattering.展开更多
This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,att...This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.展开更多
The electrical parameters of H_(2)/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe,where Ar fractions range from 0%to 100%.The influence of gas composition ...The electrical parameters of H_(2)/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe,where Ar fractions range from 0%to 100%.The influence of gas composition and pressure on electron density,the effective electron temperature and the electron energy probability functions(EEPFs)at different spatial positions are present.In driver region,with the introduction of a small amount of Ar at 0.3 Pa,there is a rapid increase in electron density accompanied by a decrease in the effective electron temperature.Additionally,the shape of the EEPF transitions from a three-temperature distribution to a bi-Maxwellian distribution due to an increase in electron-electron collision.However,this phenomenon resulting from the changes in gas composition vanishes at 5 Pa due to the prior depletion of energetic electrons caused by the increase in pressure during hydrogen discharge.The EEPFs for the total energy in expansion region is coincident to these in the driver region at 0.3 Pa,as do the patterns of electron density variation between these two regions for differing Ar fractions.At 5 Pa,as the discharge transitions from H_(2)to Ar,the EEPFs evolved from a bi-Maxwellian distribution with pronounced low energy electrons to a Maxwellian distribution in expansion region.This evolve may be attributed to a reduction in molecular vibrational excitation reactions of electrons during transport and the transition from localized electron dynamics in hydrogen discharge to non-localized electron dynamics in argon discharge.In order to validate the experimental results,we use the COMSOL simulation software to calculate electrical parameters under the same conditions.The evolution and spatial distribution of the electrical parameters of the simulation results agree well with the trend of the experimental results.展开更多
The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential fu...The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential function for longer internuclear distances. Solving the corresponding radial one-dimensional Schr?dinger equation of nuclear motion yields 22 bound vibrational levels above v=0. The comparison of these theoretical levels with the experimental data yields a mean absolute deviation of about 7.6 cm^-1 over the 23 levels. The highest vibrational level energy obtained using this method is 13308.16 cm?1 and the relative deviation compared with the experimental datum of 13408.49 cm^-1 is only 0.74%. The value from our method is much closer and more accurate than the value obtained by the quantum mechanical ab initio method by Bytautas. The reported agreement of the vibrational levels and dissociation energy with experiment is contingent upon the potential energy curve of the F2 ground state.展开更多
Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are o...Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.展开更多
In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, har...In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeχe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.展开更多
The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-ada...The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.展开更多
The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR s...The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.展开更多
基金Supported by the Hong Kong Research Grants Council (Project No.GRF16300918)the National Key R&D Program of China(Grant Nos.2016YFA0300603 and 2016YFA0302400)the National Natural Science Foundation of China (Grant No.11774398)。
文摘Kinetic energy(KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE functional estimator for a one-dimensional (1D) extended system using a machine learning method. Our end-to-end solution combines the dimensionality reduction method with the Gaussian process regression, and simple scaling method to adapt to various 1D lattices. In addition to reaching chemical accuracy in KE calculation, our estimator also performs well on KE functional derivative prediction. Integrating this machine learning KE functional into the current orbital free density functional theory scheme is able to provide us with expected ground state electron density.
文摘The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.
基金supported partly by the National Key R&D Program of China(No.2023YFA1606401)the National Natural Science Foundation of China(Nos.12135004,11635003,11961141004,12047513)+1 种基金the support of the National Natural Science Foundation of China(Nos.12275025 and 11975096)the Fundamental Research Funds for the Central Universities(No.2020NTST06)。
文摘Precise knowledge of the nuclear symmetry energy can be tentatively calibrated using multimessenger constraints.The neutron skin thickness of a heavy nucleus is one of the most sensitive indicators for probing the isovector components of effective interactions in asymmetric nuclear matter.Recent studies have suggested that the experimental data from the CREX and PREX2 collaborations are not mutually compatible with existing nuclear models.In this study,we review the quantification of the slope parameter of the symmetry energy L from the neutron skin thicknesses of^(48)Ca and^(208)Pb.Skyrme energy density functionals classified by various isoscalar incompressibility coefficients K were employed to evaluate the bulk properties of finite nuclei.The calculated results suggest that the slope parameter L deduced from^(208)Pb is sensitive to the compression modulus of symmetric nuclear matter,but not that from^(48)Ca.The effective parameter sets classified by K=220 MeV can provide an almost overlapping range of L from^(48)Ca and^(208)Pb.
文摘The aim of this study was to carry out a dynamic simulation of the energy and environmental performance of a built space system, with a view to assessing its energy and environmental class. The use of a simulation and modeling tool, supported by various methodological references, formed the basis of our approach. Adopting a systemic perspective, we described the structural and functional aspects of the systems making up built spaces, as well as the associated energy flows. Our approach was also based on a typology, taking into account typical days, structural and functional configurations at different scales and angles of observation. The analysis tool we developed in Java was applied to the built space system of the Patte d’Oie university campus in Ouagadougou. Annual electricity consumption was measured at 124387.34 kWh, closely aligned with the average annual electricity bill (125224.31 kWh), with a maximum relative deviation of 1%, followed by a carbon emission balance of 58337.66 kg eq CO<sub>2</sub> per year. This validation confirmed the effectiveness of our tool. In addition, following the analysis of electricity consumption using our tool, the university campus was classified in energy class B and environmental class C. These results will be based on the emission factors of the energy mix of the West African Economic and Monetary Union (WAEMU) territory, with particular emphasis on Burkina Faso.
基金supported by the National Natural Science Foundation of China (Grant No.10947013)the Fundamental Research Funds for the Central Universities (Grant No.XDJK2010B007)the SWU Initial Research Foundation Grant to Doctor (Grant No.SWU109011)
文摘The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections δ c for the 0+ → 0+ superallowed Fermi transitions.With these δ c values,together with the available experimental f t values and the improved radiative corrections,the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined.Even with the consideration of uncertainty,the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.
基金supported by the National Natural Science Foundation of China(No.11201221)the Natural Science Foundation of Jiangsu Province(No.BK2012468)
文摘The author investigates the relationships of some potential objects for a right Markov process and the same objects for the Girsanov transformed process induced byα-excessive function including Revuz measures, energy functionals, capacities and Lévy systems in this paper.
文摘A formula for energy functionals of a Markov process and its subprocess will be given in this paper. This generalizes a formula in [1]. We also use this formula to get some important consequences.
基金supported by the National Research Foundation of Korea(Nos.NRF-2019M1A7A1A03087579 and NRF-2021R1I1A1A01050312)the Ministry of Trade,Industry&Energy(Nos.20011226 and 20009415)。
文摘In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.
基金supported by the National Natural Science Foundation of China(21627813)。
文摘The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
基金supported by grants funded by Department of Mechanical Engineering,Faculty of Engineering,Chiang Mai University and the Graduate School of Chiang Mai University.
文摘The objective of this research was to determine the mechanical parameter from EVA foam and also investigate its behavior by using Blatz-Ko,Neo-Hookean,Mooney model and experimental test.The physical characteristic of EVA foam was also evaluated by scanning electron microscopy(SEM).The results show that Blatz-Ko and Neo-Hookean model can fit the curve at 5%and 8%strain,respectively.The Mooney model can fit the curve at 50%strain.The modulus of rigidity evaluated from Mooney model is 0.0814±0.0027 MPa.The structure of EVA foam from SEM image shows that EVA structure is a closed cell with homogeneous porous structure.From the result,it is found that Mooney model can adjust the data better than other models.This model can be applied for mechanical response prediction of EVA foam and also for reference value in engineering application.
基金Supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(2018R1A5A1025563,2023R1A2C1003177,IBS-R031-D1)。
文摘In this study,we calculated the inclusive charged-current neutrino-nucleus scattering from ^(40)Ar in the quasielastic region.To explore the effect of uncertainties stemming from the nuclear structure,we used the KIDS(Korea-IBS-Daegu-SKKU)nuclear energy density functional and Skyrme force models,namely SLy4,SkI3,and MSk7.These models were selected to have distinct behavior in terms of the density dependence of the symmetry energy and the effective mass of the nucleon.In the charged-current neutrino scattering,the single-and double-differential cross sections were calculated for various kinematics.Total cross sections are reported as a function of the incident neutrino energy.The theoretical cross sections were compared with experimental data,and the roles of the effective mass and symmetry energy were investigated in terms of charged-current neutrino-nucleus scattering.
基金financial supports by National Natural Science Foundation of China(Nos.11975163 and 12175160)Nantong Basic Science Research-General Program(No.JC22022034)Natural Science Research Fund of Jiangsu College of Engineering and Technology(No.GYKY/2023/2)。
文摘This study delves into ion behavior at the substrate position within RF magnetron discharges utilizing an indium tin oxide(ITO)target.The positive ion energies exhibit an upward trajectory with increasing RF power,attributed to heightened plasma potential and initial emergent energy.Simultaneously,the positive ion flux escalates owing to amplified sputtering rates and electron density.Conversely,negative ions exhibit broad ion energy distribution functions(IEDFs)characterized by multiple peaks.These patterns are clarified by a combination of radiofrequency oscillation of cathode voltage and plasma potential,alongside ion transport time.This elucidation finds validation in a one-dimensional model encompassing the initial ion energy.At higher RF power,negative ions surpassing 100 e V escalate in both flux and energy,posing a potential risk of sputtering damages to ITO layers.
基金supported by the National Natural Science Foundation of China(Grant Nos.11935005 and 12075049)the National Key Research and Development Program of China(Grant No.2017YFE0300106).
文摘The electrical parameters of H_(2)/Ar plasma in a cylindrical inductive discharge with an expansion region are investigated by a Langmuir probe,where Ar fractions range from 0%to 100%.The influence of gas composition and pressure on electron density,the effective electron temperature and the electron energy probability functions(EEPFs)at different spatial positions are present.In driver region,with the introduction of a small amount of Ar at 0.3 Pa,there is a rapid increase in electron density accompanied by a decrease in the effective electron temperature.Additionally,the shape of the EEPF transitions from a three-temperature distribution to a bi-Maxwellian distribution due to an increase in electron-electron collision.However,this phenomenon resulting from the changes in gas composition vanishes at 5 Pa due to the prior depletion of energetic electrons caused by the increase in pressure during hydrogen discharge.The EEPFs for the total energy in expansion region is coincident to these in the driver region at 0.3 Pa,as do the patterns of electron density variation between these two regions for differing Ar fractions.At 5 Pa,as the discharge transitions from H_(2)to Ar,the EEPFs evolved from a bi-Maxwellian distribution with pronounced low energy electrons to a Maxwellian distribution in expansion region.This evolve may be attributed to a reduction in molecular vibrational excitation reactions of electrons during transport and the transition from localized electron dynamics in hydrogen discharge to non-localized electron dynamics in argon discharge.In order to validate the experimental results,we use the COMSOL simulation software to calculate electrical parameters under the same conditions.The evolution and spatial distribution of the electrical parameters of the simulation results agree well with the trend of the experimental results.
基金This work was supported by the National Natural Science Foundation of China (No.20273066).
文摘The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential function for longer internuclear distances. Solving the corresponding radial one-dimensional Schr?dinger equation of nuclear motion yields 22 bound vibrational levels above v=0. The comparison of these theoretical levels with the experimental data yields a mean absolute deviation of about 7.6 cm^-1 over the 23 levels. The highest vibrational level energy obtained using this method is 13308.16 cm?1 and the relative deviation compared with the experimental datum of 13408.49 cm^-1 is only 0.74%. The value from our method is much closer and more accurate than the value obtained by the quantum mechanical ab initio method by Bytautas. The reported agreement of the vibrational levels and dissociation energy with experiment is contingent upon the potential energy curve of the F2 ground state.
基金This work was supported by the National Natural Science Foundation of China (No. 40274044).
文摘Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.
文摘In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeχe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.
基金Project supported by the National Natural Science Foundation of China (Grant No 10174019), Henan Innovation for University Prominent Research Talents (2006KYCX002) and the Natural Science Foundation of Henan Province, China (Grant No 2006140008).Acknowledgment The authors would like to heartily thank Professor Zhu Z H, of Sichuan University, for his helpful discussion about the reasonable dissociation limits at the planning stages of these calculations.
文摘The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11147158 and 11264020the Jiangxi Province Natural Science Foundation under Grant No 2010GQW0031the Jiangxi Province Scientific Research Program of the Education Bureau under Grant No GJJ12483
文摘The geometric structures of an Nit radical in different external electric fields are optimized by using the density functional B3P86/cc-PVSZ method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect.