期刊文献+
共找到282,929篇文章
< 1 2 250 >
每页显示 20 50 100
Anisotropic characteristics of layered backfill:Mechanical properties and energy dissipation
1
作者 Huisheng Qu Lang Liu +4 位作者 Yonglu Suo Mengbo Zhu Pan Yang Caixing Zhang Geng Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3188-3208,共21页
Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination a... Layered backfill is commonly used in mining operations,and its mechanical behavior is strongly influenced by delamination parameters.In this study,13 specimens with different numbers of delamination and delamination angle were prepared to investigate the anisotropic mechanical behavior,energy dissipation characteristics and crack development of backfill.P-wave velocity,uniaxial compression,scanning electron microscope(SEM),and acoustic emission(AE)experiments were conducted.The results indicate that:(1)The P-wave velocity has linear and elliptical relationships with the number of delamination surface and delamination angle,respectively;the strength,delamination parameters and P-wave velocity show a high degree of coincidence in terms of their function relationship,which can realize the rapid prediction of strength.(2)The microstructure of the delaminated surface is looser than that of the matrix,leading to a decrease in strength and an increase at the pore-fissure compaction stage.The number and angle of delamination increase linearly with the anisotropy coefficient.(3)The energy evolution in angle-cut backfill can be divided into four stages,with a decrease in the proportion of elastic energy at the initiation stress and peak stress with increasing number of delamination planes and delamination angle.(4)Crack development increases with the number of delamination surface and delamination angle,resulting in a decrease in energy dissipation coefficient and peak AE energy.These findings provide valuable insights for the design of filling materials and processes in mining operations. 展开更多
关键词 Layered backfill Delamination par ameters Anisotropic mechanical behavior P-wave velocity energy dissipation characteristics Acoustic emission(AE)
下载PDF
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
2
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 Assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Experimental study on the irreversible displacement evolution and energy dissipation characteristics of disturbance instability of regular joints
3
作者 Jianan Yang Pengxian Fan +2 位作者 Mingyang Wang Jie Li Lu Dong 《Deep Underground Science and Engineering》 2023年第1期20-36,共17页
To investigate the disturbance-induced shear instability mechanism of structural catastrophe in the deep rock mass,MTS 815 material testing machine was used to carry out quasi-static loading tests and disturbance shea... To investigate the disturbance-induced shear instability mechanism of structural catastrophe in the deep rock mass,MTS 815 material testing machine was used to carry out quasi-static loading tests and disturbance shear tests on symmetrical regular dentate joints of two materials at three undulation angles under specific initial static stress,disturbance frequency,and peak value.The test results indicate that:(i)the total ultimate instability displacement is only related to the intrinsic properties of the joints but not to the initial static stress and disturbance parameters;(ii)the cumulative irreversible displacement required for the disturbance instability conforms to the logistic inverse function relationship with the number of disturbances,displaying the variation trend of“rapid increase in the front,stable in the middle,and sudden increase in the rear”;(iii)the accumulation of plastic deformation energy is consistent with the evolution law of irreversible displacement of joints and the overall proportion of hysteretic energy is not large;(iv)the dissipated energy required for the instability of each group of joints is basically the same under various disturbance conditions,and this energy is mainly controlled by the initial shear stress and has no connection with the disturbance parameters.The stability of the total disturbance deformation and the disturbance energy law of the joints revealed in the tests provide data support for reasonably determining the disturbance instability criterion of joints. 展开更多
关键词 coupled static-dynamic loading instability energy irreversible displacement JOINTS stability
原文传递
Mechanical Response and Energy Dissipation Analysis of Heat-Treated Granite Under Repeated Impact Loading 被引量:1
4
作者 Zhiliang Wang Nuocheng Tian +2 位作者 Jianguo Wang Shengqi Yang Guang Liu 《Computers, Materials & Continua》 SCIE EI 2019年第4期275-296,共22页
The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,40... The mechanical behaviors and energy dissipation characteristics of heat-treated granite were investigated under repeated impact loading.The granite samples were firstly heat-treated at the temperature of 20℃,200℃,400℃,and 600℃,respectively.The thermal damage characteristics of these samples were then observed and measured before impact tests.Dynamic impact compression tests finally were carried out using a modified split-Hopkinson pressure bar under three impact velocities of 12 m/s,15 m/s,and 18 m/s.These test results show that the mineral composition and the main oxides of the granite do not change with these treatment temperatures.The number of microcracks and microvoids decreases in the sample after 200℃ treatment.The mechanical properties of a sample after 600℃ treatment were rapidly deteriorated under the same impact velocity.The average of peak stress is much smaller than those after 20℃,200℃ and 400℃ treatments.The heat-treated samples have an energy threshold each.When the dissipated energy of a sample under a single impact is less than this threshold,the repeated impacts hardly lead to further damage accumulation even if its total breakage energy dissipation(BED)density is large.Under the same number of repeated impacts,the cumulative BED density of a sample after 600℃ treatment is the largest and its damage evolves most quickly.The total BED density of the sample after 200℃ treatment is the highest,which implies that this sample has better resistance to repeated impact,thus having less crack initiation and growth. 展开更多
关键词 GRANITE heat treatment repeated impact dynamic response energy dissipation
下载PDF
A study on equivalence of nonlinear energy dissipation between first-order computational homogenization(FOCH)and re duce d-order homogenization(ROH)methods 被引量:1
5
作者 Jiajia Yue Zifeng Yuan 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第1期14-19,共6页
Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods... Nowadays,studies on the mechanism of macro-scopic nonlinear behavior of materials by accumulation of micro-scopic degradation are attracting more attention from researchers.Among numerous approaches,multiscale methods have been proved as powerful and practical approaches in predicting macro-scopic material status by averaging and homogenizing physical information from associated micro-scopic mate-rial behavior.Usually in mechanical problem,the stress,consistent material modulus,and possible mate-rial state variables are quantities in interest through the upscaling process.However,the energy-related quantities are not studied much.Some initiative work has been done in the early year including but not limited to the Hill-Mandel condition in multiscale framework,which gives that the macro-scopic elastic strain energy density can be computed by volumetric averaging of that in the micro-scale.However,in the nonlinear analysis,the energy dissipation is an important quantity to measure the degradation status.In this manuscript,two typical multiscale methods,the first-order computational homogenization(FOCH)and reduced-order homogenization(ROH),are adopted to numerically analyze a fiber-reinforced compos-ite material with capability in material nonlinearity.With numerical experiments,it can be shown that energy dissipation is the same for both approaches. 展开更多
关键词 Multiscale First-order computational homogenization (FOCH) Reduced-order homogenization(ROH) energy dissipation Computational certification
下载PDF
A five-parameter constitutive model for hysteresis shearing and energy dissipation of rock joints
6
作者 Yikun Li Tongbin Zhao +1 位作者 Yifei Li Yang Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期737-746,共10页
Rock joints exhibit hysteresis shearing behavior and produce energy dissipation under shear cyclic loads,which however cannot be accurately depicted by existing constitutive models. This paper establishes a constituti... Rock joints exhibit hysteresis shearing behavior and produce energy dissipation under shear cyclic loads,which however cannot be accurately depicted by existing constitutive models. This paper establishes a constitutive model for hysteresis shearing and associated energy dissipation of rock joints. Analytical expressions of the model during cyclic shearing processes are derived. Derivation of the model indicates no energy dissipation in the elastic stage. When the shear load exceeds elastic boundary, nonlinear energy dissipation takes place. Validations with experiments show that the proposed model provides good conformities with direct shear curves and hysteresis loops, and can predict the energy dissipation characteristics of rock joints under different working conditions. Compared to the constitutive models using Weibull's distribution, the proposed one is smooth at the elastic boundary and can accurately capture the maximum shear stress. Unlike the existing incremental-type models, the proposed one provides clear and direct analytical expressions for both shear stress and energy dissipation during the whole displacement domain, which is more convenient in application. 展开更多
关键词 Iwan model Rock joint Cyclic shear HYSTERESIS energy dissipation
下载PDF
Time history of seismic earth pressure response from gravity retaining wall based on energy dissipation
7
作者 QU Hong-lue DENG Yuan-yuan +2 位作者 GAO Ya-nan HUANG Xue ZHANG Zhe 《Journal of Mountain Science》 SCIE CSCD 2022年第2期578-590,共13页
The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave prop... The seismic design of gravity retaining walls is based mostly on the pseudo static method.The seismic earth pressure is assumed to be a constant without considering the wave traveling effect when the seismic wave propagates through the slope.However,under continuous ground motion,the actual earth pressure on the retaining wall varies with time.The present seismic earth pressure calculation method yields results that differ significantly from the actual scenario.Considering this,a slip surface curve was assumed in this study.It is more suitable for engineering practice.In addition,a theoretical calculation model based on energy dissipation was established.The time history of seismic earth pressure response under continuous ground motion was calculated using the equilibrium equation between the external power and the internal energy dissipation power of the sliding soil wedge.It can more effectively reflect the stress scenario of a retaining wall under seismic conditions.To verify the applicability of the proposed approach,a large-scale shaking table test was conducted,and the time history of the seismic earth pressure response obtained from the experiment was compared with the calculation results.The results show that the proposed approach is applicable to the calculation of the time history of seismic earth pressure response of gravity retaining walls.This lays the foundation for the seismic design of retaining structures by using dynamic time history. 展开更多
关键词 energy dissipation Time history of seismic earth pressure response Slip surface curve Gravity retaining wall Shaking table test
原文传递
State-space approach to two-temperature generalized thermoelasticity without energy dissipation of medium subjected to moving heat source
8
作者 H.M.YOUSSEF 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第1期63-74,共12页
In this work,a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed.The Laplace transform and state-space technique... In this work,a model of two-temperature generalized thermoelasticity without energy dissipation for an elastic half-space with constant elastic parameters is constructed.The Laplace transform and state-space techniques are used to obtain the general solution for any set of boundary conditions.The general solutions are applied to a specific problem of a half-space subjected to a moving heat source with a constant velocity.The inverse Laplace transforms are computed numerically,and the comparisons are shown in figures to estimate the effects of the heat source velocity and the two-temperature parameter. 展开更多
关键词 generalized thermoelasticity energy dissipation two-temperature heat source
下载PDF
Unit stream power,minimum energy dissipation rate,and river engineering
9
作者 Chih Ted Yang 《水道港口》 2010年第5期317-317,共1页
Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simpli... Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems. 展开更多
关键词 computer model minimum energy dissipation rate river engineering river morphology sediment transport unit stream power
下载PDF
Strength characteristics and energy dissipation evolution of thawing silty clay during cyclic triaxial loading
10
作者 HongHuan Cui BoYuan Shao XiaoWen Han 《Research in Cold and Arid Regions》 CSCD 2021年第5期440-449,共10页
Cyclic triaxial tests are conducted to analyze the evolution of strength parameters and energy dissipation of thawing silty clay under different stress paths.The effects of freezing temperature,thawing temperature and... Cyclic triaxial tests are conducted to analyze the evolution of strength parameters and energy dissipation of thawing silty clay under different stress paths.The effects of freezing temperature,thawing temperature and confining pressures on the stress-strain and strength characteristics of soil samples are studied through monotonic loading and cyclic loading tests by using high-and low-temperature triaxial apparatus.The variation of the total work,elastic deformation energy,dissipated energy,energy dissipation rate,residual strain,and damage variable during loading and unloading are discussed.The experimental results show that the samples have higher strain tolerance under high confining pressure,low freezing temperature,and low thawing temperature,and the same other conditions.The soil sample state and failure pattern can be judged by using the energy parameters measured in the experiment. 展开更多
关键词 thawing soil stress-strain relationship triaxial cyclic loading and unloading energy dissipation
下载PDF
Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions
11
作者 Rasoul Daneshfaraz Ehsan Aminvash +2 位作者 Reza Esmaeli Sina Sadeghfam John Abraham 《Journal of Groundwater Science and Engineering》 2020年第4期396-406,共11页
Dealing with kinetic energy is one of the most important problems in hydraulic structures,and this energy can damage downstream structures.This study aims to study energy dissipation of supercritical water flow passin... Dealing with kinetic energy is one of the most important problems in hydraulic structures,and this energy can damage downstream structures.This study aims to study energy dissipation of supercritical water flow passing through a sudden contraction.The experiments were conducted on a sudden contraction with 15 cm width.A 30 cm wide flume was installed.The relative contraction ranged from 8.9 to 9.7,where relative contraction refers to the ratio of contraction width to initial flow depth.The Froude value in the investigation varied from 2 to 7.The contraction width of numerical simulation was 5~15 cm,the relative contraction was 8.9~12.42,and the Froude value ranged from 8.9~12.42.In order to simulate turbulence,the k-εRNG model was harnessed.The experimental and numerical results demonstrate that the energy dissipation increases with the increase of Froude value.Also,with the sudden contraction,the rate of relative depreciation of energy is increased due to the increase in backwater profile and downstream flow depth.The experimentation verifies the numerical results with a correlation coefficient of 0.99 and the root mean square error is 0.02. 展开更多
关键词 Relative energy dissipation Hydraulic jump Sudden contraction
下载PDF
Effect of Initial Stress on a Thermoelastic Functionally Graded Material with Energy Dissipation
12
作者 Wahed M. Hasona Mohamed M. Adel 《Journal of Applied Mathematics and Physics》 2020年第11期2345-2355,共11页
In this paper we introduce the effect of initial stress on a magneto-thermoe- lastic functionally graded material (FGM) with Green Naghdi theory with energy dissipation. A system of PDE was obtained. The normal mode a... In this paper we introduce the effect of initial stress on a magneto-thermoe- lastic functionally graded material (FGM) with Green Naghdi theory with energy dissipation. A system of PDE was obtained. The normal mode analysis method is used to convert these equations into ODE and get the analytical solution to write expressions for displacements, temperatures, stresses. Some comparisons carried out to view the initial stress influence on the field variables. Numerical results are graphed to view the influence of initial stress. Some particular cases are deduced in this study. 展开更多
关键词 THERMOELASTICITY Functionally Graded Normal Mode Method Initial Stress energy dissipation
下载PDF
Pseudocritical Rapid Energy Dissipation Analysis of Base-Load Electrical Demand Reduction on Nuclear Steam Supply System
13
作者 Frederick Agyemang Stephen Yamoah Seth Kofi Debrah 《World Journal of Nuclear Science and Technology》 2022年第2期69-87,共19页
Effect of pseudocritical rapid energy dissipation (PRED) from Pressurizer in nuclear steam supply system of Pressurized Water Reactor, where a single event as common cause failure, of considerable reduction of base-lo... Effect of pseudocritical rapid energy dissipation (PRED) from Pressurizer in nuclear steam supply system of Pressurized Water Reactor, where a single event as common cause failure, of considerable reduction of base-load electricity demand causes the temperature of the reactor coolant system (RCS) to increase, and corresponding pressure increases in pressurizer and steam generators above set-points. The study employed the uses of MATLAB/Simulink library tools, to experimentally modelled pressure control as PRED, where the momentum of transport of kinematic viscosity fraction above pseudocritical point dissipated as excess energy, to maintain the safety of the Pressurizer and RCS and keep the water from boiling. The result demonstrated the significance of pressure vector and Prandlt number as heat transfer coefficients that provided detailed activities in 2-D contour and 3-D graphics of specific internal energy and other parameterization of fluid in the pressurizer. 展开更多
关键词 Pseudocritical Rapid energy dissipation Pseudocritical Saturation PARAMETERIZATION Internal energy Pressure Vector Heat Transfer Coefficient
下载PDF
Channel Slope Effect on Energy Dissipation of Flow over Broad Crested Weirs
14
作者 Shaymaa A. M. Al-Hashimi Huda M. Madhloom +1 位作者 Thameen N. Nahi Nadhir Al-Ansari 《Engineering(科研)》 2016年第12期837-851,共15页
The main purpose of broad crested weir used in open channels is to raise and control upstream (U/S) water level. In this study, a new performance was added to this weir, by making a step at downstream (D/S) of weir. T... The main purpose of broad crested weir used in open channels is to raise and control upstream (U/S) water level. In this study, a new performance was added to this weir, by making a step at downstream (D/S) of weir. The energy dissipation, the height of the weir/the upstream water height ratio and Froude number relationships (E% – P/h – Fr) for three range of flume slop S = 0.0, 0.002 and 0.004 were simulated. The experiments were performed in a laboratory horizontal channel of 4.6 m length, 0.3 m width and 0.3 m depth for a wide range of discharge. The D/S step height of the weir was 7.5 cm. FLUENT software was used as numerical model which represent a type of Computational Fluid Dynamics (CFD) model in order to simulate flow over weirs. The Volume of Fluid (VOF) method with the Standard k – ε turbulence model was used to estimate the free surface profile and the structured mesh with high concentration near the wall regions. The experimental results of the water surface profile gave a high agreement with the results of the numerical models. The maximum value 28.78 of E% was obtained in single step broad crested weir in the experimental result and 27.35 in numerical result at S = 0.004. Finally, the range of the relative error of the energy dissipation between experimental and numerical results was achieved and the maximum was 6.76 in all runs. 展开更多
关键词 Broad Crested Weir Numerical CFD Model Standard k ε Turbulence Model energy dissipation Ratio (E%) Sloping Flume
下载PDF
C haracteristics of turbulent kinetic energy dissipation rate and turbidity near the coast of East China Sea 被引量:1
15
作者 张艳伟 许惠平 +2 位作者 覃如府 徐昌伟 范代读 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第5期1134-1142,共9页
The East China Sea(ECS) has a high suspended-sediment concentration because of the influence of the Changjiang River,indicated by high turbidity in the water.Considering the islands off the coast and the complex topog... The East China Sea(ECS) has a high suspended-sediment concentration because of the influence of the Changjiang River,indicated by high turbidity in the water.Considering the islands off the coast and the complex topography,and the strong influence of tides and wind,the coast off the ECS is a typical region with strong oceanic mixing processes.The changes in the dynamic processes near the bottom play an important role in the control of water turbidity.The turbulent kinetic energy dissipation rate(ε) is a parameter that shows the strength of ocean mixing.This is estimated based on a structure method using current velocity that is measured by a high-frequency Acoustic Doppler Current Profiler(ADCP) from a seafloor observatory in the ECS.The results indicate strong ocean mixing processes with a mean e value of 5.7×10^(-5) W/kg and distinct tidal variations in the dissipation rate.Conversely,the variation of the water turbidity leads to changes in the water dynamical structure near the bottom.Comparing the dissipation rate with the turbidity near the bottom boundary layer,we find that the high turbidity mimics strong ocean mixing. 展开更多
关键词 TURBULENT kinetic energy dissipation rate TURBIDITY TIDES NEAR bottom boundary East China Sea
原文传递
Wave propagation and energy dissipation in viscoelastic granular media 被引量:2
16
作者 SUN Ye-zhi 1, WU Ai-xiang 1, LI Jian-hua 1,2 (1. College of Resources, Environment and Civil Engineering, Central South Unive rsity, Changsha 410083, China 2. The 5th Building Company in Guangdong Province, Shaoguan 512026, China) 《Journal of Central South University》 SCIE EI CAS 2001年第3期185-188,共4页
In terms of viscoelasticity, the relevant theory of wave i n granular media is analyzed in this paper. Under the conditions of slight deforma tion of granules, wave equation, complex number expressions of propagation ... In terms of viscoelasticity, the relevant theory of wave i n granular media is analyzed in this paper. Under the conditions of slight deforma tion of granules, wave equation, complex number expressions of propagation vecto r and attenuation vector, attenuation coefficient expressions of longitudinal wa ve and transverse wave, etc, are analyzed and deduced. The expressions of attenu ation coefficients of viscoelastic longitudinal wave and transverse wave show th a t the attenuation of wave is related to frequency. The higher the frequency is, the more the attenuation is, which is tested by the laboratory experiment. In a ddi tion, the energy dissipation is related to the higher frequency wave that is abs orbed by granular media. The friction amongst granular media also increase the e nergy dissipation. During the flowing situation the expression of transmission f actor of energy shows that the granular density difference is the key factor whi ch leads to the attenuation of vibrating energy. This has been proved by the exp eriment results. 展开更多
关键词 VISCOELASTIC GRANULAR MEDIA WAVE motion energy dissipatio n flowing SITUATION
下载PDF
Effect of specimen size on energy dissipation characteristics of red sandstone under high strain rate 被引量:24
17
作者 Li Ming Mao Xianbiao +4 位作者 Lu Aihong Tao Jing Zhang Guanghui Zhang Lianying Li Chong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期151-156,共6页
In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respectively, were subjected to blow tests using a Split Hopkinson Pressure Bar(SHPB) system at a pressure of 0.4 atmosph... In this experiment, red sandstone specimens, having slenderness ratios of 0.5, 0.7, 0.9 and 1.1 respectively, were subjected to blow tests using a Split Hopkinson Pressure Bar(SHPB) system at a pressure of 0.4 atmospheres. In this paper, we have analyzed the effect of slenderness ratio on the mechanical properties and energy dissipation characteristics of red sandstone under high strain rates. The processes of compaction, elastic deformation and stress softening deformation of specimens contract with an increase in slenderness ratio, whilst the nonlinear deformation process extends correspondingly. In addition, degrees of damage of specimens reduced gradually and the type of destruction showed a transformation trend from stretching failure towards shear failure when the slenderness ratio increased. A model of dynamic damage evolution in red sandstone was established and the parameters of the constitutive model at different ratios of length to diameter were determined. By comparison with the experimental curve, the accuracy of the model, which could reflect the stress–strain dynamic characteristics of red sandstone, was verified. From the view of energy dissipation, an increase in slenderness ratio of a specimen decreased the proportion of energy dissipation and caused a gradual fall in the capability of energy dissipation during the specimen failure process. To some extent, the study indicated the effects of slenderness ratios on the mechanical properties and energy dissipation characteristics of red sandstone under the high strain rate, which provides valuable references to related engineering designs and academic researches. 展开更多
关键词 能量耗散 高应变率 动态特性 试样尺寸 红砂岩 分离式HOPKINSON压杆 本构模型 红色砂岩
下载PDF
Recent progress and application on seismic isolation energy dissipation and control for structures in China 被引量:15
18
作者 Zhou Fulin Tan Ping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期19-27,共9页
China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe dam... China is a country where 100% of the territory is located in a seismic zone. Most of the strong earthquakes are over prediction. Most fatalities are caused by structural collapse. Earthquakes not only cause severe damage to structures, but can also damage non-structural elements on and inside of facilities. This can halt city life, and disrupt hospitals, airports, bridges, power plants, and other infrastructure. Designers need to use new techniques to protect structures and facilities inside. Isolation, energy dissipation and, control systems are more and more widely used in recent years in China. Currently, there are nearly 6,500 structures with isolation and about 3,000 structures with passive energy dissipation or hybrid control in China. The mitigation techniques are applied to structures like residential buildings, large or complex structures, bridges, underwater tunnels, historical or cultural relic sites, and industrial facilities, and are used for retrofitting of existed structures. This paper introduces design rules and some new and innovative devices for seismic isolation, energy dissipation and hybrid control for civil and industrial structures. This paper also discusses the development trends for seismic resistance, seismic isolation, passive and active control techniques for the future in China and in the world. 展开更多
关键词 强烈地震 非结构 控制系统 中国 精力 工业设备 技术保护 混合控制
下载PDF
Energy dissipation of coal and rock during damage and failure process based on EMR 被引量:16
19
作者 Song Dazhao Wang Enyuan +2 位作者 Li Zhonghui Liu Jie Xu Wenquan 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期787-795,共9页
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t... The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency. 展开更多
关键词 能量耗散 煤岩损伤 电子病历 不稳定现象 岩石系统 辐射监测系统 地球物理方法 加载方式
下载PDF
Bearing capacity of foundation on slope determined by energy dissipation method and model experiments 被引量:14
20
作者 杨小礼 王志斌 +1 位作者 邹金锋 李亮 《Journal of Central South University of Technology》 EI 2007年第1期125-128,共4页
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the bearing capacity as programming problem, and full-scale model experi... To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the bearing capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope. 展开更多
关键词 能量消耗 轴承方位 土壤 模型实验
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部