It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show tha...It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show that the sequence of Lagrange interpolation polynomials corresponding to the functions which possess better smoothness on equidistant nodes in [-1.1] still diverges every -where in the interval except at zero and the end-points.展开更多
It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, t...It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, toe prove that the sequence of Lagrange interpolation polynomials corresponding to |x|^α (2 〈 α 〈 4) on equidistant nodes in [-1, 1] diverges everywhere, except at zero and the end-points.展开更多
In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α wit...In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally展开更多
This paper shows that the sequence of Lagrange interpolation polynomials corresponding to the rune tion f(z) =|x|^α(1〈α〈2) on [-1,1] can diverge everywhere in the interval except at zero and the end-points.
文摘It is a classical result of Bernstein that the sequence of Lagrange interpolation polynomials to \x\ at e-qually spaced nodes in [-1.1] diverges everywhere. except at zero and the end-points. In this paper we show that the sequence of Lagrange interpolation polynomials corresponding to the functions which possess better smoothness on equidistant nodes in [-1.1] still diverges every -where in the interval except at zero and the end-points.
文摘It is a classical result of Bernstein that the sequence of Lagrange interpolation polumomials to |x| at equally spaced nodes in [-1, 1] diverges everywhere, except at zero and the end-points. In the present paper, toe prove that the sequence of Lagrange interpolation polynomials corresponding to |x|^α (2 〈 α 〈 4) on equidistant nodes in [-1, 1] diverges everywhere, except at zero and the end-points.
文摘In this paper we present a generalized quantitative version of a result the exact convergence rate at zero of Lagrange interpolation polynomial to spaced nodes in [-1,1] due to M.Revers concerning f(x) = |x|α with on equally
文摘This paper shows that the sequence of Lagrange interpolation polynomials corresponding to the rune tion f(z) =|x|^α(1〈α〈2) on [-1,1] can diverge everywhere in the interval except at zero and the end-points.