期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Three-Dimensional Static Analysis of Nanoplates and Graphene Sheets by Using Eringen’s Nonlocal Elasticity Theory and the Perturbation Method
1
作者 Chih-Ping Wu Wei-Chen Li 《Computers, Materials & Continua》 SCIE EI 2016年第5期73-103,共31页
A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity... A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these.The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional(2D)nonlocal plate problems,the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory(CST),although with different nonhomogeneous terms.Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions,we can obtain the Navier solutions of the leading-order problem,and the higher-order modifications can then be determined in a hierarchic and consistent manner.Some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory. 展开更多
关键词 eringen’s nonlocal elasticity theory graphene sheets NANOPLATES STATIC the perturbation method three-dimensional nonlocal elasticity
下载PDF
螺栓结合部非局部弹性介质参数的识别方法 被引量:1
2
作者 秦红玲 田红亮 朱大林 《中国机械工程》 EI CAS CSCD 北大核心 2010年第19期2313-2318,共6页
给出了结合部非局部弹性介质与两接触表面的连接关系。使用非局部弹性理论,同时考虑空间、时间和表面粗糙度,推导出结合部非局部弹性介质弹性模量、切变模量、泊松比与空间、时间关系的解析解及密度的表达式。表高标准差单独作用时,应... 给出了结合部非局部弹性介质与两接触表面的连接关系。使用非局部弹性理论,同时考虑空间、时间和表面粗糙度,推导出结合部非局部弹性介质弹性模量、切变模量、泊松比与空间、时间关系的解析解及密度的表达式。表高标准差单独作用时,应变与表高标准差的1.5次方成正比。偏差压应力的相对误差先随局部弹性体积分数增大而从0单调增大,然后随局部弹性体积分数增大而单调减小到0;偏差压应力的相对误差随Eringen参数增大而从0单调增大。热轧槽钢、钢板螺栓组连接的工程实例计算表明:结合部非局部弹性介质弹性参数皆为时变参数;当结合部非局部弹性介质弹性模量为负数时,结合部非局部弹性介质通过热轧槽钢、钢板的影响长度向热轧槽钢、钢板输入能量并使其在法向方向产生自激振动;两表面的蠕变是导致结合部非局部弹性介质弹性参数成为时变参数的主要原因之一。 展开更多
关键词 非局部弹性介质 局部弹性体积分数 eringen参数 柔量
下载PDF
弹性地基上受压矩形纳米板的自由振动与屈曲特性 被引量:5
3
作者 滕兆春 刘露 衡亚洲 《振动与冲击》 EI CSCD 北大核心 2019年第16期208-216,232,共10页
基于Eringen非局部弹性理论和经典薄板理论,利用Hamilton原理推导Winkler-Pasternak弹性地基上面内受压正交各向异性矩形纳米板自由振动的控制微分方程并进行无量纲化。采用一种半解析方法—微分变换法(DTM)将无量纲控制微分方程及边界... 基于Eringen非局部弹性理论和经典薄板理论,利用Hamilton原理推导Winkler-Pasternak弹性地基上面内受压正交各向异性矩形纳米板自由振动的控制微分方程并进行无量纲化。采用一种半解析方法—微分变换法(DTM)将无量纲控制微分方程及边界条件变换为等价的代数方程,得到含有无量纲固有频率和屈曲载荷的特征方程。数值给出了不同边界条件下无量纲地基刚度系数、压力强度、载荷参数、长宽比和纳米尺度对正交各向异性矩形纳米板无量纲固有频率的影响以及不同无量纲地基刚度系数、载荷参数和纳米尺度下的屈曲临界载荷值。结果表明:正交各向异性矩形纳米板的无量纲固有频率随无量纲地基刚度系数、载荷参数和长宽比的增大而增大,随纳米尺度的增大而趋向减小;屈曲临界载荷也随无量纲地基刚度系数的增大而增大,随纳米尺度的增大而减小。 展开更多
关键词 eringen非局部弹性理论 Winkler-Pasternak弹性地基 无量纲固有频率 屈曲临界载荷 微分变换法(DTM)
下载PDF
温度影响下转动变截面纳米梁的自由振动分析
4
作者 刘露 衡亚洲 《甘肃科学学报》 2018年第1期26-32,共7页
基于Euler-Bernoulli梁理论,利用Eringen非局部弹性原理推导得到温度影响下转动变截面纳米梁自由振动的控制微分方程并进行无量纲化,采用微分变换法(DTM)对无量纲控制方程及其边界条件进行变换,计算了温度影响下转动变截面纳米梁在两端... 基于Euler-Bernoulli梁理论,利用Eringen非局部弹性原理推导得到温度影响下转动变截面纳米梁自由振动的控制微分方程并进行无量纲化,采用微分变换法(DTM)对无量纲控制方程及其边界条件进行变换,计算了温度影响下转动变截面纳米梁在两端夹紧-简支和夹紧-自由两种边界条件下横向自由振动的无量纲固有频率。再将控制微分方程分别退化到无转动的纳米梁和转动的悬臂梁,求解了梁在一端夹紧一端自由边界条件下自由振动的无量纲固有频率,并将得到的结果与现有文献作了比较,证明DTM对求解该问题的有效性。最后考虑不同无量纲升温、无量纲轮毂半径、非局部纳米参数、无量纲转速和截面变化系数对于纳米梁自振频率的影响。 展开更多
关键词 温度 转动变截面纳米梁 eringen非局部弹性理论 无量纲固有频率 微分变换法
下载PDF
Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under Moore-Gibson-Thompson thermoelasticity theory
5
作者 Shishir Gupta Rachaita Dutta Soumik Das 《Journal of Ocean Engineering and Science》 SCIE 2023年第3期263-277,共15页
The present study enlightens the two-dimensional analysis of the thermo-mechanical response for a mi-cropolar double porous thermoelastic material with voids(MDPTMWV)by virtue of Eringen’s theory of nonlocal elastici... The present study enlightens the two-dimensional analysis of the thermo-mechanical response for a mi-cropolar double porous thermoelastic material with voids(MDPTMWV)by virtue of Eringen’s theory of nonlocal elasticity.Moore-Gibson-Thompson(MGT)heat equation is introduced to the considered model in the context of memory-dependent derivative and variable conductivity.By employing the normal mode technique,the non-dimensional coupled governing equations of motion are solved to determine the an-alytical expressions of the displacements,temperature,void volume fractions,microrotation vector,force stress tensors,and equilibrated stress vectors.Several two-dimensional graphs are presented to demon-strate the influence of various parameters,such as kernel functions,thermal conductivity,and nonlocality.Furthermore,different generalized thermoelasticity theories with variable conductivity are compared to visualize the variations in the distributions associated with the prior mentioned variables.Some particu-lar cases are also discussed in the presence and absence of different parameters. 展开更多
关键词 Memory-dependent derivative eringen’s nonlocal elasticity theory Micropolar double porous thermoelastic material with voids Moore-Gibson-Thompson thermoelasicity Variable conductivity
原文传递
Pull-in Instability Analysis of Nanoelectromechanical Rectangular Plates Including the Intermolecular, Hydrostatic, and Thermal Actuations Using an Analytical Solution Methodology
6
作者 F.Samadani R.Ansari +1 位作者 K.Hosseini A.Zabihi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第3期349-356,共8页
The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations. Based on the Kirchhoff theory along with Er... The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations. Based on the Kirchhoff theory along with Eringen's nonlocal elasticity theory, a nonclassical model is developed. Using the Galerkin method(GM), the governing equation which is a nonlinear partial differential equation(NLPDE) of the fourth order is converted to a nonlinear ordinary differential equation(NLODE) in the time domain. Then, the reduced NLODE is solved analytically by means of the homotopy analysis method. At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored. 展开更多
关键词 Nanoelectromechanical rectangular plates PULL-IN instability Kirchhoff THEORY eringen's nonlocal elasticity THEORY HOMOTOPY ANALYSIS method
原文传递
Micromorphic theory:a gateway to nano world
7
作者 Xianqiao Wang James D.Lee 《International Journal of Smart and Nano Materials》 SCIE EI 2010年第2期115-135,共21页
Micromorphic theory(MMT)envisions a material body as a continuous collection of deformable particles;each possesses finite size and inner structure.It is considered as the most successful top-down formulation of a two... Micromorphic theory(MMT)envisions a material body as a continuous collection of deformable particles;each possesses finite size and inner structure.It is considered as the most successful top-down formulation of a two-level continuum model,in which the deformation is expressed as a sum of macroscopic continuous deformation and internal microscopic deformation of the inner structure.In this work,the kinematics including the objective Eringen tensors is introduced.Balance laws are derived by requiring the energy equation to be form-invariant under the generalized Galilean transformation.The concept of material force and the balance law of pseudomomentum are generalized for MMT.An axiomatic approach is demonstrated in the formulation of constitutive equations for a generalized micromorphic thermoviscoelastic solid,generalized micromorphic fluid,micromorphic plasticity,and micromorphic electromagnetic-thermoelastic solid.Applications of MMT in micro/nanoscale are discussed. 展开更多
关键词 micromorphic theory eringen tensors constitutive theory generalized micromorphic solid/fluid electromagnetic-thermoelastic coupling micro/nanomechanics
下载PDF
On Lateral-Torsional Buckling of Non-Local Beams
8
作者 N.Challamel C.M.Wang 《Advances in Applied Mathematics and Mechanics》 SCIE 2010年第3期389-398,共10页
Nonlocal continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with micro-or nanostructures.This paper deals with the lateral-torsional buckling of elastic n... Nonlocal continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with micro-or nanostructures.This paper deals with the lateral-torsional buckling of elastic nonlocal small-scale beams.Eringen’s model is chosen for the nonlocal constitutive bendingcurvature relationship.The effect of prebuckling deformation is taken into consideration on the basis of the Kirchhoff-Clebsch theory.It is shown that the application of Eringen’s model produces small-length scale terms in the nonlocal elastic lateraltorsional buckling moment of a hinged-hinged strip beam.Clearly,the non-local parameter has the effect of reducing the critical lateral-torsional buckling moment.This tendency is consistent with the one observed for the in-plane stability analysis,for the lateral buckling of a hinged-hinged axially loaded column.The lateral buckling solution can be derived from a physically motivated variational principle. 展开更多
关键词 Lateral-torsional buckling Kirchhoff-Clebsch theory eringen’s model nonlocal theory NANOSTRUCTURES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部