期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems
1
作者 Kangjia Qiao Jing Liang +4 位作者 Kunjie Yu Xuanxuan Ban Caitong Yue Boyang Qu Ponnuthurai Nagaratnam Suganthan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1819-1835,共17页
Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they prop... Constrained multi-objective optimization problems(CMOPs)generally contain multiple constraints,which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions,thus they propose serious challenges for solvers.Among all constraints,some constraints are highly correlated with optimal feasible regions;thus they can provide effective help to find feasible Pareto front.However,most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints,and do not consider judging the relations among constraints and do not utilize the information from promising single constraints.Therefore,this paper attempts to identify promising single constraints and utilize them to help solve CMOPs.To be specific,a CMOP is transformed into a multitasking optimization problem,where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively.Besides,an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships.Moreover,an improved tentative method is designed to find and transfer useful knowledge among tasks.Experimental results on three benchmark test suites and 11 realworld problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods. 展开更多
关键词 Constrained multi-objective optimization(CMOPs) evolutionary multitasking knowledge transfer single constraint.
下载PDF
Evolutionary Multitasking With Global and Local Auxiliary Tasks for Constrained Multi-Objective Optimization 被引量:3
2
作者 Kangjia Qiao Jing Liang +3 位作者 Zhongyao Liu Kunjie Yu Caitong Yue Boyang Qu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第10期1951-1964,共14页
Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-obj... Constrained multi-objective optimization problems(CMOPs) include the optimization of objective functions and the satisfaction of constraint conditions, which challenge the solvers.To solve CMOPs, constrained multi-objective evolutionary algorithms(CMOEAs) have been developed. However, most of them tend to converge into local areas due to the loss of diversity. Evolutionary multitasking(EMT) is new model of solving complex optimization problems, through the knowledge transfer between the source task and other related tasks. Inspired by EMT, this paper develops a new EMT-based CMOEA to solve CMOPs, in which the main task, a global auxiliary task, and a local auxiliary task are created and optimized by one specific population respectively. The main task focuses on finding the feasible Pareto front(PF), and global and local auxiliary tasks are used to respectively enhance global and local diversity. Moreover, the global auxiliary task is used to implement the global search by ignoring constraints, so as to help the population of the main task pass through infeasible obstacles. The local auxiliary task is used to provide local diversity around the population of the main task, so as to exploit promising regions. Through the knowledge transfer among the three tasks, the search ability of the population of the main task will be significantly improved. Compared with other state-of-the-art CMOEAs, the experimental results on three benchmark test suites demonstrate the superior or competitive performance of the proposed CMOEA. 展开更多
关键词 Constrained multi-objective optimization evolutionary multitasking(EMT) global auxiliary task knowledge transfer local auxiliary task
下载PDF
Evolutionary Multitask Optimization in Real-World Applications: A Survey 被引量:2
3
作者 Yue Wu Hangqi Ding +5 位作者 Benhua Xiang Jinlong Sheng Wenping Ma Kai Qin Qiguang Miao Maoguo Gong 《Journal of Artificial Intelligence and Technology》 2023年第1期32-38,共7页
Because of its strong ability to solve problems,evolutionary multitask optimization(EMTO)algorithms have been widely studied recently.Evolutionary algorithms have the advantage of fast searching for the optimal soluti... Because of its strong ability to solve problems,evolutionary multitask optimization(EMTO)algorithms have been widely studied recently.Evolutionary algorithms have the advantage of fast searching for the optimal solution,but it is easy to fall into local optimum and difficult to generalize.Combining evolutionary multitask algorithms with evolutionary optimization algorithms can be an effective method for solving these problems.Through the implicit parallelism of tasks themselves and the knowledge transfer between tasks,more promising individual algorithms can be generated in the evolution process,which can jump out of the local optimum.How to better combine the two has also been studied more and more.This paper explores the existing evolutionary multitasking theory and improvement scheme in detail.Then,it summarizes the application of EMTO in different scenarios.Finally,according to the existing research,the future research trends and potential exploration directions are revealed. 展开更多
关键词 evolutionary multitasking evolutionary algorithm optimization
下载PDF
多任务优化算法及应用研究综述
4
作者 武越 丁航奇 +5 位作者 何昊 毕顺杰 江君 公茂果 苗启广 马文萍 《计算机应用》 CSCD 北大核心 2024年第5期1338-1347,共10页
进化多任务优化(EMTO)是进化计算中一种新型方法,它可以同时解决多个相关的优化任务,并通过任务之间的知识转移增强每个任务的优化。近年来,越来越多的进化多任务优化相关研究致力于利用它强大的并行搜索能力和降低计算成本的潜力优化... 进化多任务优化(EMTO)是进化计算中一种新型方法,它可以同时解决多个相关的优化任务,并通过任务之间的知识转移增强每个任务的优化。近年来,越来越多的进化多任务优化相关研究致力于利用它强大的并行搜索能力和降低计算成本的潜力优化各种问题,并且EMTO已应用于各种各样的实际场景当中。从EMTO的原理、核心设计、应用以及挑战四个方面对EMTO的算法及应用进行了讨论。首先介绍了EMTO的大致分类,分别从两个层次、四个方面介绍,包括单种群多任务、多种群多任务、辅助任务形式以及多形式任务形式;其次介绍EMTO的核心组件设计,包括任务构建以及知识转移;最后对它的各种应用场景进行介绍,并对今后研究做了总结与展望。 展开更多
关键词 进化多任务优化 单种群多任务 多种群多任务 多形式任务 知识转移
下载PDF
优化场景视角下的进化多任务优化综述
5
作者 赵佳伟 陈雪峰 +3 位作者 冯亮 候亚庆 朱泽轩 Ong Yew-Soon 《计算机应用》 CSCD 北大核心 2024年第5期1325-1337,共13页
随着优化问题变得日益复杂,传统的进化算法由于计算成本高昂和适用性有限而面临挑战。为了克服这些挑战,基于知识迁移的进化多任务优化(EMTO)算法应运而生,它的核心思想是通过跨任务的知识共享,同时解决多个优化问题,旨在提高进化算法... 随着优化问题变得日益复杂,传统的进化算法由于计算成本高昂和适用性有限而面临挑战。为了克服这些挑战,基于知识迁移的进化多任务优化(EMTO)算法应运而生,它的核心思想是通过跨任务的知识共享,同时解决多个优化问题,旨在提高进化算法在应对复杂优化场景的效率。全面总结了当前进化多任务优化研究的进展,与已有综述文章相比,从不同的研究视角进行深入探讨,并指出了现有文献中对优化场景视角分析的缺失。鉴于此,从优化问题的应用场景出发,对适用于进化多任务优化的场景及其基本解决策略进行了系统性的阐述,以帮助研究人员准确地根据具体应用需求选择合适的研究方法。此外,深入讨论进化多任务优化当前面临的挑战和未来的研究方向,旨在为未来的研究提供指导和启示。 展开更多
关键词 进化算法 进化多任务优化 知识迁移 复杂优化问题
下载PDF
基于双阶段搜索的约束进化多任务优化算法 被引量:1
6
作者 赵楷文 王鹏 童向荣 《计算机应用》 CSCD 北大核心 2024年第5期1415-1422,共8页
高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现... 高效地平衡算法的多样性、收敛性和可行性是求解约束多目标优化问题(CMOP)的关键;然而,复杂约束的出现给该类问题的求解带来了更大的挑战。因此,提出一种基于双阶段搜索的约束进化多任务优化算法(TEMA),通过完成两个协同进化的任务实现多样性、收敛性和可行性之间的平衡。首先,进化过程由探索和利用两个阶段组成,分别致力于加强算法在目标空间的广泛探索能力和高效搜索能力;其次,设计一种动态约束处理策略以平衡种群中可行解的比例,从而增强算法在可行区域的探索能力;再次,提出一种回退搜索策略,利用无约束Pareto前沿所包含的信息指导算法向约束Pareto前沿快速收敛;最后,在两个基准测试集中的23个问题上进行对比实验。实验结果表明,TEMA分别在14个和13个测试问题上取得最优反世代距离(IGD)值和超体积(HV)值,体现出明显优势。 展开更多
关键词 约束多目标优化问题 进化多任务优化算法 双阶段进化机制 进化算法 约束处理技术
下载PDF
基于机器学习的演化多任务优化框架 被引量:1
7
作者 麦伟杰 刘伟莉 钟竞辉 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期29-51,共23页
演化多任务优化是近年来计算智能领域的研究热点之一,其原理是通过任务间的知识转移提高演化算法同时求解多个任务的效率.由于任务间相似性对促进任务之间的正向知识转移具有重要的影响,因此,如何度量任务间的相似性成为了重点研究方向... 演化多任务优化是近年来计算智能领域的研究热点之一,其原理是通过任务间的知识转移提高演化算法同时求解多个任务的效率.由于任务间相似性对促进任务之间的正向知识转移具有重要的影响,因此,如何度量任务间的相似性成为了重点研究方向之一.目前,演化多任务优化在处理两个任务时,辅助任务的选取仅限于两者之一,且在处理超多任务时对任务间知识的转移缺乏灵活性.为此,本文提出一个基于机器学习的演化多任务优化框架,命名为MaTML.该框架联合所有任务关联的子种群形成一个统一的初始化种群,利用目标任务的技能因子及其对应的种群个体分别构建标签和训练集,应用十折交叉法拟合模型,并运用模型预测与目标任务相似的个体以组成辅助种群,从而促进演化优化中的正向知识转移.本文提出的算法能够在动态的种群个体中找到目标任务的辅助种群,不仅可以为三个或以上的多任务优化灵活地选取相似辅助任务,而且解决了当任务数量为两个时有效地选择辅助任务的问题.通过与现阶段的多任务算法和超多任务算法分别在CEC2017问题测试集和WCCI2020SO问题测试集进行比较,实验结果证实MaTML在优化多任务问题时具有更优或竞争性的性能.此外,文中还详细研究了MaTML的计算资源、模型性能、模型稳定性以及相关组件.最后,本文还基于真实问题的测试进一步验证了MaTML的有效性. 展开更多
关键词 演化多任务优化 机器学习 任务间相似性 知识转移 辅助任务
下载PDF
进化迁移优化算法综述 被引量:3
8
作者 伍洲 杨寒石 +2 位作者 邬俊俊 张海军 宋晴 《计算机工程》 CAS CSCD 北大核心 2023年第1期1-14,共14页
进化算法是模拟自然界生物进化的启发式算法,具有良好的搜索能力和灵活性且广泛用于复杂优化问题的求解,但在求解过程中默认问题先验知识为零,然而由于问题很少孤立存在,解决单一任务积累的经验可迁移至其他相关任务。进化迁移优化算法... 进化算法是模拟自然界生物进化的启发式算法,具有良好的搜索能力和灵活性且广泛用于复杂优化问题的求解,但在求解过程中默认问题先验知识为零,然而由于问题很少孤立存在,解决单一任务积累的经验可迁移至其他相关任务。进化迁移优化算法利用相关领域的知识学习和迁移,实现了更好的优化效率和性能。介绍进化迁移优化算法的基本分类,从源任务选择、知识迁移、缩小搜索空间差异、进化算法搜索、进化资源分配等5个角度出发对主流进化迁移优化算法的核心策略和优劣势进行梳理和分析。通过中国知网和WOS平台对2014年至2021年的进化迁移优化相关文献进行检索,运用知识图谱进行数据挖掘、信息处理、知识计量和图形绘制,根据进化迁移优化的发展趋势和经验分析总结了其面临的主要挑战和未来研究方向。 展开更多
关键词 进化算法 进化迁移优化 进化多任务优化 知识迁移 迁移学习
下载PDF
基于进化多任务的边缘计算服务部署和任务卸载 被引量:6
9
作者 蔡星娟 郭彦亨 +1 位作者 赵天浩 张文生 《计算机工程》 CAS CSCD 北大核心 2023年第7期1-9,共9页
服务部署和任务卸载是边缘计算面临的两大挑战,但目前在边缘环境下都是对任务卸载这一单一问题的求解,较少考虑服务部署问题。由于服务部署与任务卸载是高度耦合的,只考虑其中一个问题具有局限性,会造成资源的浪费及较大的时延,从而影... 服务部署和任务卸载是边缘计算面临的两大挑战,但目前在边缘环境下都是对任务卸载这一单一问题的求解,较少考虑服务部署问题。由于服务部署与任务卸载是高度耦合的,只考虑其中一个问题具有局限性,会造成资源的浪费及较大的时延,从而影响用户的体验感。此外,传统的进化算法不能同时处理多个单目标或多目标优化任务。为解决上述问题,构建一个多任务多目标模型,将每个优化问题视作一个任务,并针对该模型提出一种改进的基于多因子优化的进化多任务算法,通过引入位置更新策略来增加搜索种群的多样性,并在此基础上设计改进选型交配方法,提高后代个体的质量。仿真实验结果表明,与多目标算法对比,该算法在SP、Span、PD等多个指标上均有较好的表现,明显提高了算法收敛性能,大幅加快了求解速度,整体系统性能提高了11.4%。 展开更多
关键词 移动边缘计算 服务部署 任务卸载 进化多任务算法 多目标优化
下载PDF
基于自适应分解的多任务协作型昂贵多目标优化算法 被引量:8
10
作者 蔡昕烨 马中雨 +5 位作者 张峰 李楠 程会林 孙祺 肖禹舜 李小平 《计算机学报》 EI CAS CSCD 北大核心 2021年第9期1934-1948,共15页
现实世界的工程优化问题通常需要同时优化多个冲突的目标,且这些目标函数的评估由于依赖仿真、物理实验而十分昂贵,这类问题被称为昂贵多目标优化问题.使用机器学习方法建立代理模型用于估计候选解的目标函数值是求解此类问题的一种有... 现实世界的工程优化问题通常需要同时优化多个冲突的目标,且这些目标函数的评估由于依赖仿真、物理实验而十分昂贵,这类问题被称为昂贵多目标优化问题.使用机器学习方法建立代理模型用于估计候选解的目标函数值是求解此类问题的一种有效手段.高斯代理模型适用于训练样本数较少的中小规模问题,且能提供评估的不确定性,因此常作为代理模型被应用于昂贵优化.分解是处理多目标优化问题的一种有效手段.一个多目标优化问题可被分解为多个单目标优化子问题,且多个子问题可被进一步划分为代理模型学习的一个目标任务.现有基于分解的昂贵多目标优化算法大多将固定数量的子问题静态地划分到同一任务,从而构造多个固定任务并对其建立多任务高斯代理模型进行求解.这未能充分利用数据的相关信息动态反映出任务间的相关性,限制了多任务高斯过程模型的预测精度以及优化算法的最终性能.为此,本文提出了一种自适应多任务多种群协作搜索算法(AMMCS).AMMCS使用相似性指标实时度量已评估的解集,获得子问题间的相关性,从而自适应地划分任务,提升多任务模型的预测质量.此外,AMMCS使用一个解集(种群)优化一个任务,并通过多种群的协作搜索实现多任务高斯模型的批量优化,提高了采样效率,提升了算法的收敛效率.通过AMMCS与六个代理辅助进化算法进行多组实验对比和分析,显示了AMMCS具有良好的性能.我们同时也设计实验验证了算法中自适应分解以及多种群协作搜索的有效性. 展开更多
关键词 代理辅助进化算法 昂贵优化 多目标优化 多任务高斯过程模型 多种群协作搜索
下载PDF
基于多因子粒子群的高维数据特征选择算法 被引量:6
11
作者 林炜星 王宇嘉 +1 位作者 陈万芬 梁海娜 《计算机工程与应用》 CSCD 北大核心 2021年第22期199-207,共9页
特征选择是机器学习和数据挖掘领域中一项重要的数据预处理技术,它旨在最大化分类任务的精度和最小化最优子集特征个数。运用粒子群算法在高维数据集中寻找最优子集面临着陷入局部最优和计算代价昂贵的问题,导致分类精度下降。针对此问... 特征选择是机器学习和数据挖掘领域中一项重要的数据预处理技术,它旨在最大化分类任务的精度和最小化最优子集特征个数。运用粒子群算法在高维数据集中寻找最优子集面临着陷入局部最优和计算代价昂贵的问题,导致分类精度下降。针对此问题,提出了基于多因子粒子群算法的高维数据特征选择算法。引入了进化多任务的算法框架,提出了一种两任务模型生成的策略,通过任务间的知识迁移加强种群交流,提高种群多样性以改善易陷入局部最优的缺陷;设计了基于稀疏表示的初始化策略,在算法初始阶段设计具有稀疏表示的初始解,降低了种群在趋向最优解集时的计算开销。在6个公开医学高维数据集上的实验结果表明,所提算法能够有效实现分类任务且得到较好的精度。 展开更多
关键词 高维数据 特征选择 进化多任务 粒子群算法(PSO)
下载PDF
多任务机制驱动的高维多目标进化算法 被引量:2
12
作者 刘天宇 曹磊 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第4期134-143,183,共11页
针对传统进化算法在解决高维多目标优化问题时,因选择压力减少而产生的搜索能力急剧下降的现象,提出了一种多任务机制驱动的高维多目标优化算法。该算法首先采用一种自适应降维算子来构造与原始高维优化任务相关的低维任务,以此来增加... 针对传统进化算法在解决高维多目标优化问题时,因选择压力减少而产生的搜索能力急剧下降的现象,提出了一种多任务机制驱动的高维多目标优化算法。该算法首先采用一种自适应降维算子来构造与原始高维优化任务相关的低维任务,以此来增加优化过程中的选择压力。在低维任务的构造过程中,根据对当前目标子集的评估结果来自适应地选择合适的降维技术对原始高维任务进行降维。然后采用多任务机制同时对低维任务及原始高维任务进行优化。算法采用一种任务间交流算子来完成个体任务分配以及种群的更新操作,进而使得算法在利用低维任务提高搜索能力的同时能够避免降维所引起的有用信息丢失。此外,为了避免算法在搜索过程中出现早熟现象,通过对外部种群中出现代数较多的个体进行差分变异来增加外部种群的多样性。实验部分将该算法与几种常用的高维多目标进化算法在5组标准测试函数上进行对比分析。仿真结果验证了该算法在求解高维多目标优化问题时的有效性。 展开更多
关键词 多任务 高维目标优化 进化算法 目标降维 自适应算法
下载PDF
快速负荷波动下支持最优潮流的进化型多任务处理架构(英文)
13
作者 L. P. M. I. Sampath Abhishek Gupta +1 位作者 Yew-Soon Ong H. B. Gooi 《南方电网技术》 北大核心 2017年第10期103-114,共12页
电力系统运行规划主要使用以小时为单位运行的机组组合。目前,可再生能源在用户侧的渗透率越来越高,导致电力系统负荷产生巨大波动。因此,为了维持电力系统运行的经济性和安全需求、确保电力供应的可靠性,我们有必要进行以小时为间隔的... 电力系统运行规划主要使用以小时为单位运行的机组组合。目前,可再生能源在用户侧的渗透率越来越高,导致电力系统负荷产生巨大波动。因此,为了维持电力系统运行的经济性和安全需求、确保电力供应的可靠性,我们有必要进行以小时为间隔的最优潮流计算,并且考虑各种可能情况。传统的元启发法比较适合解决最优潮流问题,但是由于耗时太长,实际上并不实用。为此,本文提出了一种进化型多任务处理架构,根据不同负荷需求并行处理多个最优潮流问题。仿真结果表明该架构极大地提升了进化算法在最优潮流问题的利用率,与正统进化算法相比具有更快的计算速度。 展开更多
关键词 进化算法 进化型多任务处理 元启发 最优潮流
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部