期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
Rockburst criterion and evaluation method for potential rockburst pit depth considering excavation damage effect
1
作者 Jinhao Dai Fengqiang Gong Lei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1649-1666,共18页
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta... Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth. 展开更多
关键词 Deep tunnel ROCKBURST Rockburst pit excavation damage effect Hoek-Brown criterion
下载PDF
Deterministic and probabilistic analysis of great-depth braced excavations:A 32 m excavation case study in Paris
2
作者 Tingting Zhang Julien Baroth +1 位作者 Daniel Dias Khadija Nejjar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1505-1521,共17页
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra... The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given. 展开更多
关键词 Braced deep excavation Soil-wall interaction Stochastic finite element method Horizontal wall deflection SETTLEMENT Failure probability
下载PDF
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
3
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
Evaluation of excavation damaged zones(EDZs)in Horonobe Underground Research Laboratory(URL)
4
作者 Koji Hata Sumio Niunoya +1 位作者 Kazuhei Aoyagi Nobukatsu Miyara 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期365-378,共14页
Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and disco... Excavation of underground caverns,such as mountain tunnels and energy-storage caverns,may cause the damages to the surrounding rock as a result of the stress redistribution.In this influenced zone,new cracks and discontinuities are created or propagate in the rock mass.Therefore,it is effective to measure and evaluate the acoustic emission(AE)events generated by the rocks,which is a small elastic vibration,and permeability change.The authors have developed a long-term measurement device that incorporates an optical AE(O-AE)sensor,an optical pore pressure sensor,and an optical temperature sensor in a single multi-optical measurement probe(MOP).Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste(HLW)deep geological disposal technology.In a high-level radioactive disposal project,one of the challenges is the development of methods for long-term monitoring of rock mass behavior.Therefore,in January 2014,the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center.The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation.In addition,hydraulic conductivity increased by 2e4 orders of magnitude.Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures.Based on this,a conceptual model is developed to represent the excavation damaged zone(EDZ),which contributes to the safe geological disposal of radioactive waste. 展开更多
关键词 excavation damaged zone(EDZ) Optical sensor Long-term monitoring Acoustic emission(AE) Shaft sinking
下载PDF
Predicting the Thickness of an Excavation Damaged Zone around the Roadway Using the DA-RF Hybrid Model 被引量:2
5
作者 Yuxin Chen Weixun Yong +1 位作者 Chuanqi Li Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2507-2526,共20页
After the excavation of the roadway,the original stress balance is destroyed,resulting in the redistribution of stress and the formation of an excavation damaged zone(EDZ)around the roadway.The thickness of EDZ is the... After the excavation of the roadway,the original stress balance is destroyed,resulting in the redistribution of stress and the formation of an excavation damaged zone(EDZ)around the roadway.The thickness of EDZ is the key basis for roadway stability discrimination and support structure design,and it is of great engineering significance to accurately predict the thickness of EDZ.Considering the advantages of machine learning(ML)in dealing with high-dimensional,nonlinear problems,a hybrid prediction model based on the random forest(RF)algorithm is developed in this paper.The model used the dragonfly algorithm(DA)to optimize two hyperparameters in RF,namely mtry and ntree,and used mean absolute error(MAE),rootmean square error(RMSE),determination coefficient(R^(2)),and variance accounted for(VAF)to evaluatemodel prediction performance.A database containing 217 sets of data was collected,with embedding depth(ED),drift span(DS),surrounding rock mass strength(RMS),joint index(JI)as input variables,and the excavation damaged zone thickness(EDZT)as output variable.In addition,four classic models,back propagation neural network(BPNN),extreme learning machine(ELM),radial basis function network(RBF),and RF were compared with the DA-RF model.The results showed that the DARF mold had the best prediction performance(training set:MAE=0.1036,RMSE=0.1514,R^(2)=0.9577,VAF=94.2645;test set:MAE=0.1115,RMSE=0.1417,R^(2)=0.9423,VAF=94.0836).The results of the sensitivity analysis showed that the relative importance of each input variable was DS,ED,RMS,and JI from low to high. 展开更多
关键词 excavation damaged zone random forest dragonfly algorithm predictive model metaheuristic optimization
下载PDF
Excavation compensation theory and supplementary technology system for large deformation disasters 被引量:2
6
作者 Manchao He Qiru Sui Zhigang Tao 《Deep Underground Science and Engineering》 2023年第2期105-128,共24页
Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters ... Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control. 展开更多
关键词 energy engineering excavation compensation large deformation NPR anchor cable slope engineering traffic tunnel engineering
原文传递
Formulation and procedure for in situ stress back-analysis from borehole strain changes measured during nearby underground excavation
7
作者 Cui Lin D.H.Steve Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1931-1943,共13页
Estimation of in situ stresses based on back-analysis of measured stress changes and displacements has become an alternative to the direct stress measurement methods.In order to help users conduct own measurement and ... Estimation of in situ stresses based on back-analysis of measured stress changes and displacements has become an alternative to the direct stress measurement methods.In order to help users conduct own measurement and analysis,this paper presents in detail a field stress back-analysis approach directly from borehole strain changes measured during nearby underground excavation.Essential formulations in major steps and the procedure for the entire analysis process are provided to allow users to follow.The instrument for borehole strain change measurement can be the CSIR or CSIRO stress cells and other borehole strain cells that can measure strains on borehole walls.Strain changes corresponding to the stress changes at a borehole location are calculated in borehole environment.The stress changes due to nearby excavation can be calculated by an analytical model for a single circular opening and simulated by a numerical model for non-circular and multiple openings.These models are based on isotropic,homogeneous and linear elastic assumptions.The analysis of borehole strain changes is accomplished by multiple linear regression based on error minimization and an integrated process provides the best-fit solution directly to the in situ stresses.A statistical technique is adopted for screening outliers in the measurement data,checking measurement compatibility and evaluating the reliability of analysis results.An application example is included to demonstrate the practical application and the analysis procedure. 展开更多
关键词 In situ stress field BACK-ANALYSIS Borehole strain change Multiple linear regression Underground excavation Data compatibility Result reliability
下载PDF
A rigid true triaxial apparatus for analyses of deformation and failure features of deep weak rock under excavation stress paths
8
作者 Xia-Ting Feng Xiaojun Yu +2 位作者 Yangyi Zhou Chengxiang Yang Feiyan Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1065-1075,共11页
The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thu... The squeezing scenario in deep weak rock tunnels can hinder underground construction.However,due to the limitations of test technologies at hand,the real excavation stress path cannot be mimicked in the laboratory.Thus,the large deformation mechanism of deep weak rocks still remains unclear.For this,a true triaxial apparatus(TTA)to investigate the mechanical responses of deep weak rock under excavation stress paths in field and reveal the squeezing mechanism of deep tunnels is assembled and developed at Northeastern University,China.The apparatus can perform instantaneous unloading in s3 direction based on electromagnetism technology.In addition,uniform loading and deformation measurements can be carried out based on the proposed linked interlocking clamp and antifriction device,even if the sample has a strong dilatation deformation performance.Next,a bore trepanning is designed to capture noiseless acoustic emission(AE)signals for deep weak rock at a low threshold.Finally,two tests were are conducted using this instrument to preliminarily understand the failure and deformation features of deep weak rock based on fractured marble.The results show that the complete stressestrain curves of fractured marble have the characteristics of low strengths and large deformations,and the larger deformation and the more serious failure occur when the fractured marble enters the post-peak state after excavation.The results show that the developed apparatus is likely to be applicable for deep weak rock engineering. 展开更多
关键词 True triaxial apparatus(TTA) Deep weak rock Large deformation excavation stress path Instantaneous unloading
下载PDF
A post-peak dilatancy model for soft rock and its application in deep tunnel excavation
9
作者 Wuqiang Cai Hehua Zhu +3 位作者 Wenhao Liang Xiaojun Wang Chenlong Su Xiangyang Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期683-701,共19页
The dilation angle is the most commonly used parameter to study nonlinear post-peak dilatancy(PPD)behavior and simulate surrounding rock deformation;however,simplified or constant dilatancy models are often used in nu... The dilation angle is the most commonly used parameter to study nonlinear post-peak dilatancy(PPD)behavior and simulate surrounding rock deformation;however,simplified or constant dilatancy models are often used in numerical calculations owing to their simple mathematical forms.This study developed a PPD model for rocks(rock masses)based on the Alejanoe-Alonso(A-A)dilatancy model.The developed model comprehensively reflects the influences of confining pressure(σ_(3))and plastic shear strain(γ^(p)),with the advantages of a simple mathematical form,while requiring fewer parameters and demonstrating a clear physical significance.The overall fitting accuracy of the PPD model for 11 different rocks was found to be higher than that of the A-A model,particularly for Witwatersrand quartzite and jointed granite.The applicability and reliability of the PPD model to jointed granites and different scaled Moura coals were also investigated,and the model was found to be more suitable for the soft and large-scale rocks,e.g.deep rock mass.The PPD model was also successfully applied in studying the mechanical response of a circular tunnel excavated in strain-softening rock mass,and the developed semi-analytical solution was compared and verified with existing analytical solutions.The sensitivities of the rock dilatancy to γ^(p) and σ_(3) showed significant spatial variabilities along the radial direction of the surrounding rock,and the dilation angle did not exhibit a monotonical increasing or decreasing law from the elasticeplastic boundary to the tunnel wall,thereby presenting the σ3-or γ^(p)-dominated differential effects of rock dilatancy.Tunnel deformation parabolically or exponentially increased with increasing in situ stress(buried depth).The developed PPD model is promising to conduct refined numerical and analytical analyses for deep tunneling,which produces extensive plastic deformation and exhibits significant nonlinear post-peak behavior. 展开更多
关键词 Deep excavation Post-peak dilatancy(PPD)model AlejanoeAlonso(AeA)dilatancy model Soft rock
下载PDF
Model test of negative Poisson’s ratio cable for supporting super-largespan tunnel using excavation compensation method
10
作者 Manchao He Aipeng Guo +4 位作者 Zhifeng Du Songyuan Liu Chun Zhu Shiding Cao Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1355-1369,共15页
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.... In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。 展开更多
关键词 Super-large-span tunnel excavation compensation method(ECM) NPR(Negative Poisson’s ratio)anchor cable Model test
下载PDF
Construction Technology and Safety Risk Control Measures of Deep Foundation Pit Excavation
11
作者 Mingmin Jiang 《Journal of World Architecture》 2023年第2期24-29,共6页
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t... Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits. 展开更多
关键词 Construction engineering Deep foundation pit excavation Construction technology Risk prevention and control measures
下载PDF
Compensation excavation method control for large deformation disaster of mountain soft rock tunnel 被引量:7
12
作者 Manchao He Qiru Sui +2 位作者 Mengnan Li Zhijiao Wang Zhigang Tao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期951-963,共13页
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar... In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels. 展开更多
关键词 Tunnel engineering excavation method Soft rock Large deformation Compensation excavation method
下载PDF
Numerical evaluation of new Austrian tunneling method excavation sequences: A case study 被引量:2
13
作者 Hafeezur Rehman Abdul Muntaqim Naji +3 位作者 Wahid Ali Muhammad Junaid Rini Asnida Abdullah Han-kyu Yoo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期381-386,共6页
The main aspects that require attention in tunnel design in terms of safety and economy are the precise estimation of probable ground conditions and ground behavior during construction. The variation in rock mass beha... The main aspects that require attention in tunnel design in terms of safety and economy are the precise estimation of probable ground conditions and ground behavior during construction. The variation in rock mass behavior due to tunnel excavation sequence plays an important role during the construction stage.The purpose of this research is to numerically evaluate the effect of excavation sequence on the ground behavior for the Lowari tunnel project, Pakistan. For the tunnel stability, the ground behavior observed during the actual partial face excavation sequence is compared with the top heading and bench excavation sequence. For this purpose, the intact rock parameters are used along with the characterization of rock mass joints related parameters to provide input for numerical modelling via FLAC 2D. The in-situ stresses for the numerical modelling are obtained using empirical equations. From the comparison of the two excavation sequences, it was observed that the actual excavation sequence used for Lowari tunnel construction utilized more support than the top heading and bench method. However, the actual excavation sequence provided good results in terms of stability. 展开更多
关键词 Conventional excavation excavation sequence Numerical modelling High in-situ stresses Jointed rock mass
下载PDF
Umbrella Arching and Compensation Grouting in Order to Protect Settlement-Sensitive Buildings over Large Shotcrete Excavations in Gravel
14
作者 Habil.Jochen Fillibeck Andy Klinger +1 位作者 Martin Sailer Stephan Geuder 《Journal of Civil Engineering and Architecture》 2022年第2期53-66,共14页
The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial g... The Tunnel Oberau, with a length of 2.9 km, forms the core of the local bypass of Oberau. Between the two massifs Kirchbichl and Mühlberg, the tunnel is situated in the valley of the Gießenbach in alluvial gravel with only a small overlap underneath settlement-sensitive buildings. In this paper, the measures in the tunnel to minimize the settlements of the buildings during the shotcrete excavations are described. Basis for this planning were extensive 3D-FE-calculations. Furthermore, under two buildings a compensation grouting measure was carried out, in order to compensate the occurring settlements. This paper describes how the required time and the amount of injection material (grout) could be reduced during the compensation grouting in highly permeable gravel. 展开更多
关键词 Umbrella arching shotcrete excavation compensation grouting excavation in gravel
下载PDF
Numerical analyses of influence of overlying pit excavation on existing tunnels 被引量:30
15
作者 郑刚 魏少伟 《Journal of Central South University》 SCIE EI CAS 2008年第S2期69-75,共7页
The response of existing tunnel due to overlying excavation was studied using 2D FEM (Finite element method). Three typical locations of tunnel with respect to excavation, namely at the central line under the excavati... The response of existing tunnel due to overlying excavation was studied using 2D FEM (Finite element method). Three typical locations of tunnel with respect to excavation, namely at the central line under the excavation bottom, directly under the base of diaphragm wall and outside of diaphragm, were considered. The variation of tunnel response with the change of location of tunnel was analyzed. The stress path of soil surrounding tunnel during the process of excavation was compared. Numerical analysis results indicate that the underlying tunnels at different locations under the excavation will experience convergence and divergence due to overlying excavation. Moreover, the tunnel located below base of diaphragm wall will experience distortion. The deformation is mainly due to the uneven changes of ground contact pressure on tunnel linings. Both the vertical and horizontal displacement of the tunnel decrease with the increase of the tunnel embedded depth beneath the formation of excavation. 展开更多
关键词 PIT excavation TUNNEL RESPONSE FEM
下载PDF
Deformation characteristics and safety assessment of a high-speed railway induced by undercutting metro tunnel excavation 被引量:19
16
作者 Wangping Qian Taiyue Qi +2 位作者 Yunjian Zhao Yizhou Le Haiyang Yi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第1期88-98,共11页
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ... Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels. 展开更多
关键词 METRO TUNNEL excavation High-speed railway SETTLEMENT characteristics Safety assessment Numerical simulation Case application
下载PDF
Fracture development around deep underground excavations: Insights from FDEM modelling 被引量:20
17
作者 Andrea Lisjak Daniel Figi Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期493-505,共13页
Over the past twenty years, there has been a growing interest in the development of numerical models that can realistically capture the progressive failure of rock masses. In particular, the investigation of damage de... Over the past twenty years, there has been a growing interest in the development of numerical models that can realistically capture the progressive failure of rock masses. In particular, the investigation of damage development around underground excavations represents a key issue in several rock engineering applications, including tunnelling, mining, drilling, hydroelectric power generation, and the deep geological disposal of nuclear waste. The goal of this paper is to show the effectiveness of a hybrid finitediscrete element method(FDEM) code to simulate the fracturing mechanisms associated with the excavation of underground openings in brittle rock formations. A brief review of the current state-of-theart modelling approaches is initially provided, including the description of selecting continuum- and discontinuum-based techniques. Then, the influence of a number of factors, including mechanical and in situ stress anisotropy, as well as excavation geometry, on the simulated damage is analysed for three different geomechanical scenarios. Firstly, the fracture nucleation and growth process under isotropic rock mass conditions is simulated for a circular shaft. Secondly, the influence of mechanical anisotropy on the development of an excavation damaged zone(EDZ) around a tunnel excavated in a layered rock formation is considered. Finally, the interaction mechanisms between two large caverns of an underground hydroelectric power station are investigated, with particular emphasis on the rock mass response sensitivity to the pillar width and excavation sequence. Overall, the numerical results indicate that FDEM simulations can provide unique geomechanical insights in cases where an explicit consideration of fracture and fragmentation processes is of paramount importance. 展开更多
关键词 TUNNELLING Caverns Rock FRACTURING excavation damaged zone (EDZ) Hybrid finite-discrete element method(FDEM)Numerical modelling
下载PDF
Predicting excavation damage zone depths in brittle rocks 被引量:13
18
作者 Matthew A.Perras Mark S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第1期60-74,共15页
During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the... During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the depth of damage is a critical aspect for the design of permeability sensitive excavations, such as a deep geological repository(DGR) for nuclear waste. Review of literature regarding the depth of excavation damage zones(EDZs) indicates three zones are common and typically related to stress induced damage. Based on past developments related to brittle damage prediction using continuum modelling, the depth of the EDZs has been examined numerically. One method to capture stress induced damage in conventional engineering software is the damage initiation and spalling limit(DISL) approach. The variability of depths predicted using the DISL approach has been evaluated and guidelines are suggested for determining the depth of the EDZs around circular excavations in brittle rock masses. Of the inputs evaluated, it was found that the tensile strength produces the greatest variation in the depth of the EDZs. The results were evaluated statistically to determine the best fit relation between the model inputs and the depth of the EDZs. The best correlation and least variation were found for the outer EDZ and the highly damaged zone(HDZ) showed the greatest variation. Predictive equations for different EDZs have been suggested and the maximum numerical EDZ depths, represented by the 68% prediction interval, agreed well with the empirical evidence. This suggests that the numerical limits can be used for preliminary depth prediction of the EDZs in brittle rock for circular excavations. 展开更多
关键词 excavation damage ZONES (EDZs)Deep GEOLOGICAL REPOSITORY (DGR)Empirical DEPTH prediction Numerical DEPTH predictionDamage DEPTH sensitivityDamage initiation and SPALLING limit (DISL)
下载PDF
State-of-the-art review of soft computing applications in underground excavations 被引量:33
19
作者 Wengang Zhang Runhong Zhang +4 位作者 Chongzhi Wu Anthony Teck Chee Goh Suzanne Lacasse Zhongqiang Liu Hanlong Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1095-1106,共12页
Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,comp... Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available. 展开更多
关键词 Soft computing method(SCM) Underground excavations Wall deformation Predictive capacity
下载PDF
Assessing fracturing mechanisms and evolution of excavation damaged zone of tunnels in interlocked rock masses at high stresses using a finitediscrete element approach 被引量:6
20
作者 I.Vazaios N.Vlachopoulos M.S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期701-722,共22页
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-ex... Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation. 展开更多
关键词 excavation damaged zone (EDZ) BRITTLE failure Finite-discrete element method (FDEM) TUNNELLING DISCRETE fracture network (DFN)
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部