Based on the experimental data from hot compression tests on Gleeble 1500 thermal simulator, the revised constitutive equations of spray-formed FGH95 superalloy considering the effect of strain on the material constan...Based on the experimental data from hot compression tests on Gleeble 1500 thermal simulator, the revised constitutive equations of spray-formed FGH95 superalloy considering the effect of strain on the material constants were established. The average absolute relative error (AARE) was employed to verify the validity of the constitutive equation, and the value of AARE is 3.85 %. Subsequently, the revised constitutive equations were successfully used to simulate and analyze the deformation behavior, stress distribution, forming loads and temperature distribution in both dies and billet during the isothermal forging process of turbine disk of large dimension (about 400 mm in diameter) by the means of finite element method (FEM). Moreover, the optimum process parameters are 1,120 ℃ of forging temperature and 0.01 s^-1 of strain rate for the spray-formed FGH95 superalloy turbine disk.展开更多
The flow behavior of spray-formed FGH95 superalloy (similar to Rene 95) was investigated at tempera- tures ranging from 1050 to 1 140 ℃ and strain rate ranging from 0.01 to 10 s-1. At a given temperature and strain...The flow behavior of spray-formed FGH95 superalloy (similar to Rene 95) was investigated at tempera- tures ranging from 1050 to 1 140 ℃ and strain rate ranging from 0.01 to 10 s-1. At a given temperature and strain rate, flow stress increases quickly with increasing strain and then reaches a peak, then gradual decreases until high strain, and dynamic softening is observed. Utilizing the hyperbolic sine {unction and introducing the strain with non- linear fitting, the revised constitutive equations incorporating the effects of temperature, strain rate and strain for high temperature flow stress prediction of superalloy were established. The revised constitutive equations were im- planted into finite element software by second development to simulate the hot compression process successfully, and the effective stress and load stroke curves obtained by numerical simulation are good agreement with the experimen- tal results.展开更多
The potential of spray forming for microstructural refining can be attractive to the production of superalloys.A200mm spray formed FGH95superalloy round billet that was produced using a single atomizer has considerabl...The potential of spray forming for microstructural refining can be attractive to the production of superalloys.A200mm spray formed FGH95superalloy round billet that was produced using a single atomizer has considerably homogeneous,small,equiaxed grains.The measured oxygen content is 2×10-5,and the measured porosity is only 0.6%.The achieved yield of deposit is in a good range of about 73.6%.The microstructure and tensile properties of nickel-based spray formed FGH95superalloy are analyzed.Also,effects of heat treatment on microstructure were discussed.The results show that the spray formed FGH95superalloy has higher isotropy in tensile property due to itsγ′phase homogeneous distribution and less defects in the microstructure.Regarding processing procedures,the different heat treatment processes affect the microstructure andγ′phase homogeneous distribution of spray formed FGH95superalloy.展开更多
In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superallo...In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.展开更多
The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indi...The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.展开更多
This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy expos...This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ' phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of singleor double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)〈 110〉 dislocation inside the γ matrix phase and 〈110〉 super-dislocation inside the γ'phase. The formation of the stacking faults and (1/3)〈112〉 super-Shockleys partial dislocation configuration is attributed to the decomposition of 〈 110〉 super-dislocation in the γ' phase.展开更多
基金financially supported by the National Natural Science Foundation of China(No.50974016).
文摘Based on the experimental data from hot compression tests on Gleeble 1500 thermal simulator, the revised constitutive equations of spray-formed FGH95 superalloy considering the effect of strain on the material constants were established. The average absolute relative error (AARE) was employed to verify the validity of the constitutive equation, and the value of AARE is 3.85 %. Subsequently, the revised constitutive equations were successfully used to simulate and analyze the deformation behavior, stress distribution, forming loads and temperature distribution in both dies and billet during the isothermal forging process of turbine disk of large dimension (about 400 mm in diameter) by the means of finite element method (FEM). Moreover, the optimum process parameters are 1,120 ℃ of forging temperature and 0.01 s^-1 of strain rate for the spray-formed FGH95 superalloy turbine disk.
基金Item Sponsored by National Natural Science Foundation of China(50974016)
文摘The flow behavior of spray-formed FGH95 superalloy (similar to Rene 95) was investigated at tempera- tures ranging from 1050 to 1 140 ℃ and strain rate ranging from 0.01 to 10 s-1. At a given temperature and strain rate, flow stress increases quickly with increasing strain and then reaches a peak, then gradual decreases until high strain, and dynamic softening is observed. Utilizing the hyperbolic sine {unction and introducing the strain with non- linear fitting, the revised constitutive equations incorporating the effects of temperature, strain rate and strain for high temperature flow stress prediction of superalloy were established. The revised constitutive equations were im- planted into finite element software by second development to simulate the hot compression process successfully, and the effective stress and load stroke curves obtained by numerical simulation are good agreement with the experimen- tal results.
基金Sponsored by National High Technology Research and Development Program(863Program)of China(2007AA03Z502)
文摘The potential of spray forming for microstructural refining can be attractive to the production of superalloys.A200mm spray formed FGH95superalloy round billet that was produced using a single atomizer has considerably homogeneous,small,equiaxed grains.The measured oxygen content is 2×10-5,and the measured porosity is only 0.6%.The achieved yield of deposit is in a good range of about 73.6%.The microstructure and tensile properties of nickel-based spray formed FGH95superalloy are analyzed.Also,effects of heat treatment on microstructure were discussed.The results show that the spray formed FGH95superalloy has higher isotropy in tensile property due to itsγ′phase homogeneous distribution and less defects in the microstructure.Regarding processing procedures,the different heat treatment processes affect the microstructure andγ′phase homogeneous distribution of spray formed FGH95superalloy.
文摘In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.
基金This work is financially supported by The National Defence Committee of ChineseTechnology(No.95-YJ-20)
文摘The surface microstructure and the surface segregation of FGH 95 nickel-basedsuperalloy powders prepared through plasma rotating electrode processing (PREP) have beeninvestigated by using SEM and AES. The results indicate that the surface microstructure of powderschanges from dendrite into cellular stricture as the particle size of powders decrease, and thepredominant precipitates solidified on the particle surfaces were identified as MC' type carbidesenriched with Nb and Ti. It was also indicated that along with the depth of particle surfaces, thesegregation layer of S, C and O elements are thick, and that of Ti, Cr elements are thin for largesire powders while they are in reverse for median size particles.
文摘This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ' phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of singleor double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)〈 110〉 dislocation inside the γ matrix phase and 〈110〉 super-dislocation inside the γ'phase. The formation of the stacking faults and (1/3)〈112〉 super-Shockleys partial dislocation configuration is attributed to the decomposition of 〈 110〉 super-dislocation in the γ' phase.