This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations ...This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.展开更多
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde...The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.展开更多
The machine loading problem in flexible manufacturing system is addressed in this paper. The problem is modelled as a mixed integer program. A Genetic Algorithm (GA) approach is developed to yield an optimal solution....The machine loading problem in flexible manufacturing system is addressed in this paper. The problem is modelled as a mixed integer program. A Genetic Algorithm (GA) approach is developed to yield an optimal solution. In the genetic algorithm, chromosomes are encoded in term of operation routes. A point to point crossover search operator together with a Cyclic Shifting Mutation (CSM) operator is designed to adapt to the problem. At last computational experience with the model is presented, and the results show that our genetic algorithms are very powerful and suitable to machine loading problems.展开更多
文摘This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.
文摘The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.
文摘The machine loading problem in flexible manufacturing system is addressed in this paper. The problem is modelled as a mixed integer program. A Genetic Algorithm (GA) approach is developed to yield an optimal solution. In the genetic algorithm, chromosomes are encoded in term of operation routes. A point to point crossover search operator together with a Cyclic Shifting Mutation (CSM) operator is designed to adapt to the problem. At last computational experience with the model is presented, and the results show that our genetic algorithms are very powerful and suitable to machine loading problems.